dmrs_nr.c 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.1  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

/**********************************************************************
*
* FILENAME    :  dmrs_nr.c
*
* MODULE      :  demodulation reference signals
*
* DESCRIPTION :  generation of dmrs sequences
*                3GPP TS 38.211
*
************************************************************************/

#include "PHY/NR_REFSIG/ss_pbch_nr.h"
#include "PHY/NR_REFSIG/dmrs_nr.h"

Khalid Ahmed's avatar
Khalid Ahmed committed
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

uint8_t allowed_xlsch_re_in_dmrs_symbol(uint16_t k,
                                        uint16_t start_sc,
                                        uint8_t numDmrsCdmGrpsNoData,
                                        uint8_t dmrs_type) {
  uint8_t delta;
  uint16_t diff;
  if (k>start_sc)
    diff = k-start_sc;
  else
    diff = start_sc-k;
  for (int i = 0; i<numDmrsCdmGrpsNoData; i++){
    if  (dmrs_type==NFAPI_NR_DMRS_TYPE1) {
      delta = i;
      if (((diff)%2)  == delta)
        return (0);
    }
    else {
      delta = i<<1;
      if ( (((diff)%6)  == delta) || (((k-start_sc)%6)  == (delta+1)) )
        return (0);
    }
  }
  return (1);
}


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
/*******************************************************************
*
* NAME :         pseudo_random_gold_sequence
*
* PARAMETERS :
*
* RETURN :       generate pseudo-random sequence which is a length-31 Gold sequence
*
* DESCRIPTION :  3GPP TS 38.211 5.2.1 Pseudo-random sequence generation
*                Sequence generation is a length-31 Gold sequence
*
*********************************************************************/

#define NC                     (1600)
#define GOLD_SEQUENCE_LENGTH   (31)

int pseudo_random_sequence(int M_PN, uint32_t *c, uint32_t cinit)
{
  int n;
  int size_x =  NC + GOLD_SEQUENCE_LENGTH + M_PN;
  uint32_t *x1;
  uint32_t *x2;

  x1 = calloc(size_x, sizeof(uint32_t));

  if (x1 == NULL) {
    msg("Fatal error: memory allocation problem \n");
    assert(0);
  }

  x2 = calloc(size_x, sizeof(uint32_t));

  if (x2 == NULL) {
    free(x1);
    msg("Fatal error: memory allocation problem \n");
    assert(0);
  }

  x1[0] = 1;  /* init first m sequence */

  /* cinit allows to initialise second m-sequence x2 */
  for (n = 0; n < GOLD_SEQUENCE_LENGTH; n++) {
     x2[n] = (cinit >> n) & 0x1;
  }

  for (n = 0; n < (NC + M_PN); n++) {
    x1[n+31] = (x1[n+3] + x1[n])%2;
    x2[n+31] = (x2[n+3] + x2[n+2] + x2[n+1] + x2[n])%2;
  }

  for (int n = 0; n < M_PN; n++) {
    c[n] = (x1[n+NC] + x2[n+NC])%2;
  }

  free(x1);
  free(x2);

  return 0;
}

/*******************************************************************
*
* NAME :         pseudo_random_sequence_optimised
*
* PARAMETERS :
*
* RETURN :       generate pseudo-random sequence which is a length-31 Gold sequence
*
* DESCRIPTION :  3GPP TS 38.211 5.2.1 Pseudo-random sequence generation
*                Sequence generation is a length-31 Gold sequence
*                This is an optimized function based on bitmap variables
*
*                x1(0)=1,x1(1)=0,...x1(30)=0,x1(31)=1
*                x2 <=> cinit, x2(31) = x2(3)+x2(2)+x2(1)+x2(0)
*                x2 <=> cinit = sum_{i=0}^{30} x2(i)2^i
*                c(n) = x1(n+Nc) + x2(n+Nc) mod 2
*
*                                             equivalent to
* x1(n+31) = (x1(n+3)+x1(n))mod 2                   <=>      x1(n) = x1(n-28) + x1(n-31)
* x2(n+31) = (x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod 2   <=>      x2(n) = x2(n-28) + x2(n-29) + x2(n-30) + x2(n-31)
*
*********************************************************************/

void pseudo_random_sequence_optimised(unsigned int size, uint32_t *c, uint32_t cinit)
{
  unsigned int n,x1,x2;

  /* init of m-sequences */
  x1 = 1+ (1<<31);
  x2 = cinit;
  x2=x2 ^ ((x2 ^ (x2>>1) ^ (x2>>2) ^ (x2>>3))<<31);

  /* skip first 50 double words of uint32_t (1600 bits) */
  for (n=1; n<50; n++) {
    x1 = (x1>>1) ^ (x1>>4);
    x1 = x1 ^ (x1<<31) ^ (x1<<28);
    x2 = (x2>>1) ^ (x2>>2) ^ (x2>>3) ^ (x2>>4);
    x2 = x2 ^ (x2<<31) ^ (x2<<30) ^ (x2<<29) ^ (x2<<28);
  }

  for (n=0; n<size; n++) {
    x1 = (x1>>1) ^ (x1>>4);
    x1 = x1 ^ (x1<<31) ^ (x1<<28);
    x2 = (x2>>1) ^ (x2>>2) ^ (x2>>3) ^ (x2>>4);
    x2 = x2 ^ (x2<<31) ^ (x2<<30) ^ (x2<<29) ^ (x2<<28);
    c[n] = x1^x2;
  }
}

/*******************************************************************
*
* NAME :         lte_gold_new
*
* PARAMETERS :
*
* RETURN :       generate pseudo-random sequence which is a length-31 Gold sequence
*
* DESCRIPTION :  This function is the same as "lte_gold" function in file lte_gold.c
*                It allows checking that optimization works fine.
*                generated sequence is given in an array as a bit map.
*
*********************************************************************/

#define CELL_DMRS_LENGTH   (224*2)
#define CHECK_GOLD_SEQUENCE

void lte_gold_new(LTE_DL_FRAME_PARMS *frame_parms, uint32_t lte_gold_table[20][2][14], uint16_t Nid_cell)
{
  unsigned char ns,l,Ncp=1-frame_parms->Ncp;
  uint32_t cinit;

#ifdef CHECK_GOLD_SEQUENCE

  uint32_t dmrs_bitmap[20][2][14];
  uint32_t *dmrs_sequence =  calloc(CELL_DMRS_LENGTH, sizeof(uint32_t));
  if (dmrs_sequence == NULL) {
    msg("Fatal error: memory allocation problem \n");
  	assert(0);
  }
  else
  {
    printf("Check of demodulation reference signal of pbch sequence \n");
  }

#endif

  /* for each slot number */
  for (ns=0; ns<20; ns++) {

  /* for each ofdm position */
    for (l=0; l<2; l++) {

      cinit = Ncp +
             (Nid_cell<<1) +
             (((1+(Nid_cell<<1))*(1 + (((frame_parms->Ncp==0)?4:3)*l) + (7*(1+ns))))<<10);

      pseudo_random_sequence_optimised(14, &(lte_gold_table[ns][l][0]), cinit);

#ifdef CHECK_GOLD_SEQUENCE

      pseudo_random_sequence(CELL_DMRS_LENGTH, dmrs_sequence, cinit);

      int j = 0;
      int k = 0;

      /* format for getting bitmap from uint32_t */
      for (int i=0; i<14; i++) {
        dmrs_bitmap[ns][l][i] = 0;
        for (; j < k + 32; j++) {
          dmrs_bitmap[ns][l][i] |= (dmrs_sequence[j]<<j);
        }
        k = j;
      }

      for (int i=0; i<14; i++) {
        if (lte_gold_table[ns][l][i] != dmrs_bitmap[ns][l][i]) {
          printf("Error in gold sequence computation for ns %d l %d and index %i : 0x%x 0x%x \n", ns, l, i, lte_gold_table[ns][l][i], dmrs_bitmap[ns][l][i]);
          assert(0);
        }
      }

#endif

    }
  }

#ifdef CHECK_GOLD_SEQUENCE
  free(dmrs_sequence);
#endif
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
/*******************************************************************
*
* NAME :         get_dmrs_freq_idx_ul
*
* PARAMETERS :   n : index of DMRS symbol
*                k_prime  : k_prime = {0,1}
*                delta : given by Tables 6.4.1.1.3-1 and 6.4.1.1.3-2
*                dmrs_type  : DMRS configuration type
*
* RETURN :       demodulation reference signal for PUSCH
*
* DESCRIPTION :  see TS 38.211 V15.4.0 Demodulation reference signals for PUSCH
*
*********************************************************************/

270
uint16_t get_dmrs_freq_idx_ul(uint16_t n, uint8_t k_prime, uint8_t delta, uint8_t dmrs_type) {
271 272 273 274 275 276 277 278

  uint16_t dmrs_idx;

  if (dmrs_type == pusch_dmrs_type1)
    dmrs_idx = ((n<<2)+(k_prime<<1)+delta);
  else
    dmrs_idx = (6*n+k_prime+delta);

279 280 281
  return dmrs_idx;
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
/*******************************************************************
*
* NAME :         get_dmrs_pbch
*
* PARAMETERS :   i_ssb : index of ssb/pbch beam
*                n_hf  : number of the half frame in which PBCH is transmitted in frame
*
* RETURN :       demodulation reference signal for PBCH
*
* DESCRIPTION :  see TS 38.211 7.4.1.4 Demodulation reference signals for PBCH
*
*********************************************************************/

#define CHECK_DMRS_PBCH_SEQUENCE

void generate_dmrs_pbch(uint32_t dmrs_pbch_bitmap[DMRS_PBCH_I_SSB][DMRS_PBCH_N_HF][DMRS_BITMAP_SIZE], uint16_t Nid_cell)
{
  uint32_t cinit;
  int i_ssb;
  int n_hf;
  int _i_ssb;

#ifdef CHECK_DMRS_PBCH_SEQUENCE

  uint32_t dmrs_bitmap[DMRS_PBCH_I_SSB][DMRS_PBCH_N_HF][DMRS_BITMAP_SIZE];
  uint32_t *dmrs_sequence =  calloc(CELL_DMRS_LENGTH, sizeof(uint32_t));
  if (dmrs_sequence == NULL) {
    msg("Fatal error: memory allocation problem \n");
  	assert(0);
  }
  else
  {
    printf("Check of demodulation reference signal of pbch sequence \n");
  }

#endif

  /* for each slot number */
  for (i_ssb = 0; i_ssb<DMRS_PBCH_I_SSB; i_ssb++) {

    /* for each ofdm position */
    for (n_hf=0; n_hf<DMRS_PBCH_N_HF; n_hf++) {

      _i_ssb = i_ssb + 4*n_hf;

      cinit = (((_i_ssb + 1)*((Nid_cell>>4) + 1))<<11) + ((_i_ssb + 1)<<6) + (Nid_cell%4);

      pseudo_random_sequence_optimised(DMRS_BITMAP_SIZE, &(dmrs_pbch_bitmap[i_ssb][n_hf][0]), cinit);

#ifdef CHECK_DMRS_PBCH_SEQUENCE

      /* it allows checking generated with standard generation code */
      pseudo_random_sequence(DMRS_BITMAP_SIZE*sizeof(uint32_t), dmrs_sequence, cinit);

      int j = 0;
      int k = 0;

      /* format for getting bitmap from uint32_t */
      for (int i=0; i<DMRS_BITMAP_SIZE; i++) {
    	dmrs_bitmap[i_ssb][n_hf][i] = 0;
    	/* convert to bitmap */
      	for (; j < k + 32; j++) {
          dmrs_bitmap[i_ssb][n_hf][i] |= (dmrs_sequence[j]<<j);
      	}
      	k = j;
      }

      for (int i=0; i<DMRS_BITMAP_SIZE; i++) {
        if (dmrs_pbch_bitmap[i_ssb][n_hf][i] != dmrs_bitmap[i_ssb][n_hf][i]) {
          printf("Error in gold sequence computation for ns %d l %d and index %i : 0x%x 0x%x \n", i_ssb, n_hf, i, dmrs_pbch_bitmap[i_ssb][n_hf][i], dmrs_bitmap[i_ssb][n_hf][i]);
      	  assert(0);
        }
      }

#endif

    }
  }

#ifdef CHECK_DMRS_PBCH_SEQUENCE
  free(dmrs_sequence);
#endif
}
365
/* return the position of next dmrs symbol in a slot */
366
int8_t get_next_dmrs_symbol_in_slot(uint16_t  ul_dmrs_symb_pos, uint8_t counter, uint8_t end_symbol)
367 368
{
  for(uint8_t symbol = counter; symbol < end_symbol; symbol++)
369 370
  {
    if((ul_dmrs_symb_pos >> symbol) & 0x01 )
371 372 373
    {
      return symbol;
    }
374
  }
375
  return -1;
376 377
}

378

379 380 381 382 383 384 385 386 387 388
/* return the total number of dmrs symbol in a slot */
uint8_t get_dmrs_symbols_in_slot(uint16_t l_prime_mask,  uint16_t nb_symb)
{
  uint8_t tmp = 0;
  for (int i = 0; i < nb_symb; i++)
  {
    tmp += (l_prime_mask >> i) & 0x01;
  }
  return tmp;
}
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

/* return the position of valid dmrs symbol in a slot for channel compensation */
int8_t get_valid_dmrs_idx_for_channel_est(uint16_t  dmrs_symb_pos, uint8_t counter)
{
  int8_t  symbIdx = -1;
  /* if current symbol is DMRS then return this index */
  if(is_dmrs_symbol(counter,  dmrs_symb_pos ) ==1)
  {
    return counter;
  }
  /* find previous DMRS symbol */
  for(int8_t symbol = counter;symbol >=0 ; symbol--)
  {
    if((1<<symbol & dmrs_symb_pos)> 0)
    {
      symbIdx = symbol;
      break;
    }
  }
  /* if there is no previous dmrs available then find the next possible*/
  if(symbIdx == -1)
  {
    symbIdx = get_next_dmrs_symbol_in_slot(dmrs_symb_pos,counter,15);
  }
  return symbIdx;
}