nr-ue.c 29.8 KB
Newer Older
laurent's avatar
laurent committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.0  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

#include "executables/nr-uesoftmodem.h"

#include "LAYER2/NR_MAC_UE/mac.h"
//#include "RRC/LTE/rrc_extern.h"
#include "PHY_INTERFACE/phy_interface_extern.h"

#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all
//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all

#include "fapi_nr_ue_l1.h"
#include "PHY/phy_extern_nr_ue.h"
#include "PHY/INIT/phy_init.h"
#include "PHY/MODULATION/modulation_UE.h"
#include "LAYER2/NR_MAC_UE/mac_proto.h"
#include "RRC/NR_UE/rrc_proto.h"

//#ifndef NO_RAT_NR
#include "SCHED_NR/phy_frame_config_nr.h"
//#endif
#include "SCHED_NR_UE/defs.h"

#include "PHY/NR_UE_TRANSPORT/nr_transport_proto_ue.h"

#include "common/utils/LOG/log.h"
#include "common/utils/LOG/vcd_signal_dumper.h"

#include "T.h"

#ifdef XFORMS
  #include "PHY/TOOLS/nr_phy_scope.h"

  extern char do_forms;
#endif


extern double cpuf;
//static  nfapi_nr_config_request_t config_t;
//static  nfapi_nr_config_request_t* config =&config_t;

/*
 *  NR SLOT PROCESSING SEQUENCE
 *
 *  Processing occurs with following steps for connected mode:
 *
 *  - Rx samples for a slot are received,
 *  - PDCCH processing (including DCI extraction for downlink and uplink),
 *  - PDSCH processing (including transport blocks decoding),
 *  - PUCCH/PUSCH (transmission of acknowledgements, CSI, ... or data).
 *
 *  Time between reception of the slot and related transmission depends on UE processing performance.
 *  It is defined by the value NR_UE_CAPABILITY_SLOT_RX_TO_TX.
 *
 *  In NR, network gives the duration between Rx slot and Tx slot in the DCI:
 *  - for reception of a PDSCH and its associated acknowledgment slot (with a PUCCH or a PUSCH),
 *  - for reception of an uplink grant and its associated PUSCH slot.
 *
 *  So duration between reception and it associated transmission depends on its transmission slot given in the DCI.
 *  NR_UE_CAPABILITY_SLOT_RX_TO_TX means the minimum duration but higher duration can be given by the network because UE can support it.
 *
 *                                                                                                    Slot k
 *                                                                                  -------+------------+--------
 *                Frame                                                                    | Tx samples |
 *                Subframe                                                                 |   buffer   |
 *                Slot n                                                            -------+------------+--------
 *       ------ +------------+--------                                                     |
 *              | Rx samples |                                                             |
 *              |   buffer   |                                                             |
 *       -------+------------+--------                                                     |
 *                           |                                                             |
 *                           V                                                             |
 *                           +------------+                                                |
 *                           |   PDCCH    |                                                |
 *                           | processing |                                                |
 *                           +------------+                                                |
 *                           |            |                                                |
 *                           |            v                                                |
 *                           |            +------------+                                   |
 *                           |            |   PDSCH    |                                   |
 *                           |            | processing | decoding result                   |
 *                           |            +------------+    -> ACK/NACK of PDSCH           |
 *                           |                         |                                   |
 *                           |                         v                                   |
 *                           |                         +-------------+------------+        |
 *                           |                         | PUCCH/PUSCH | Tx samples |        |
 *                           |                         |  processing | transfer   |        |
 *                           |                         +-------------+------------+        |
 *                           |                                                             |
 *                           |/___________________________________________________________\|
 *                            \  duration between reception and associated transmission   /
 *
 * Remark: processing is done slot by slot, it can be distribute on different threads which are executed in parallel.
 * This is an architecture optimization in order to cope with real time constraints.
 * By example, for LTE, subframe processing is spread over 4 different threads.
 *
 */

#ifndef NO_RAT_NR
  #define DURATION_RX_TO_TX           (NR_UE_CAPABILITY_SLOT_RX_TO_TX)  /* for NR this will certainly depends to such UE capability which is not yet defined */
#else
  #define DURATION_RX_TO_TX           (4)   /* For LTE, this duration is fixed to 4 and it is linked to LTE standard for both modes FDD/TDD */
#endif

#define FRAME_PERIOD    100000000ULL
#define DAQ_PERIOD      66667ULL
#define FIFO_PRIORITY   40

typedef enum {
  pss=0,
  pbch=1,
  si=2
} sync_mode_t;


PHY_VARS_NR_UE *init_nr_ue_vars(NR_DL_FRAME_PARMS *frame_parms,
                                uint8_t UE_id,
                                uint8_t abstraction_flag)

{
  PHY_VARS_NR_UE *ue;

  if (frame_parms!=(NR_DL_FRAME_PARMS *)NULL) { // if we want to give initial frame parms, allocate the PHY_VARS_UE structure and put them in
    ue = (PHY_VARS_NR_UE *)malloc(sizeof(PHY_VARS_NR_UE));
    memset(ue,0,sizeof(PHY_VARS_NR_UE));
    memcpy(&(ue->frame_parms), frame_parms, sizeof(NR_DL_FRAME_PARMS));
  } else ue = PHY_vars_UE_g[UE_id][0];

  ue->Mod_id      = UE_id;
  ue->mac_enabled = 1;
  // initialize all signal buffers
  init_nr_ue_signal(ue,1,abstraction_flag);
  // intialize transport
  init_nr_ue_transport(ue,abstraction_flag);
  return(ue);
}

/*!
 * It performs band scanning and synchonization.
 * \param arg is a pointer to a \ref PHY_VARS_NR_UE structure.
 */

typedef struct syncData_s {
  PHY_VARS_NR_UE *UE;
} syncData_t;

static void UE_synch(void *arg) {
  syncData_t *syncD=(syncData_t *) arg;
  int i, hw_slot_offset;
  PHY_VARS_NR_UE *UE = syncD->UE;
  int current_band = 0;
  int current_offset = 0;
  sync_mode_t sync_mode = pbch;
  int CC_id = UE->CC_id;
  int freq_offset=0;
  UE->is_synchronized = 0;

  if (UE->UE_scan == 0) {
    int ind;

180 181
    get_band(downlink_frequency[CC_id][0], &UE->frame_parms.eutra_band,   &uplink_frequency_offset[CC_id][0], &UE->frame_parms.frame_type);
    
laurent's avatar
laurent committed
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    LOG_I( PHY, "[SCHED][UE] Check absolute frequency DL %"PRIu32", UL %"PRIu32" (oai_exit %d, rx_num_channels %d)\n",
           downlink_frequency[0][0], downlink_frequency[0][0]+uplink_frequency_offset[0][0],
           oai_exit, openair0_cfg[0].rx_num_channels);

    for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
      openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i];
      openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] =
        downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
      openair0_cfg[UE->rf_map.card].autocal[UE->rf_map.chain+i] = 1;

      if (uplink_frequency_offset[CC_id][i] != 0) //
        openair0_cfg[UE->rf_map.card].duplex_mode = duplex_mode_FDD;
      else //FDD
        openair0_cfg[UE->rf_map.card].duplex_mode = duplex_mode_TDD;
    }

    sync_mode = pbch;
  } else {
    current_band=0;
201 202
    LOG_E(PHY,"Fixme!\n");
    /*
laurent's avatar
laurent committed
203 204 205 206 207 208 209 210 211
    for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
      downlink_frequency[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[CC_id].dl_min;
      uplink_frequency_offset[UE->rf_map.card][UE->rf_map.chain+i] =
        bands_to_scan.band_info[CC_id].ul_min-bands_to_scan.band_info[CC_id].dl_min;
      openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i];
      openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] =
        downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
      openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;
    }
212
    */
laurent's avatar
laurent committed
213 214 215 216 217
  }

  LOG_W(PHY, "Starting sync detection\n");

  switch (sync_mode) {
218
    /*
laurent's avatar
laurent committed
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    case pss:
      LOG_I(PHY,"[SCHED][UE] Scanning band %d (%d), freq %u\n",bands_to_scan.band_info[current_band].band, current_band,bands_to_scan.band_info[current_band].dl_min+current_offset);
      //lte_sync_timefreq(UE,current_band,bands_to_scan.band_info[current_band].dl_min+current_offset);
      current_offset += 20000000; // increase by 20 MHz

      if (current_offset > bands_to_scan.band_info[current_band].dl_max-bands_to_scan.band_info[current_band].dl_min) {
        current_band++;
        current_offset=0;
      }

      if (current_band==bands_to_scan.nbands) {
        current_band=0;
        oai_exit=1;
      }

      for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
        downlink_frequency[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[current_band].dl_min+current_offset;
        uplink_frequency_offset[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[current_band].ul_min-bands_to_scan.band_info[0].dl_min + current_offset;
        openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i];
        openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
        openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;

        if (UE->UE_scan_carrier) {
          openair0_cfg[UE->rf_map.card].autocal[UE->rf_map.chain+i] = 1;
        }
      }

      break;
247 248
    */
    
laurent's avatar
laurent committed
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    case pbch:
      LOG_I(PHY, "[UE thread Synch] Running Initial Synch (mode %d)\n",UE->mode);

      if (nr_initial_sync( UE, UE->mode ) == 0) {
        freq_offset = UE->common_vars.freq_offset; // frequency offset computed with pss in initial sync
        hw_slot_offset = (UE->rx_offset<<1) / UE->frame_parms.samples_per_slot;
        LOG_I(PHY,"Got synch: hw_slot_offset %d, carrier off %d Hz, rxgain %d (DL %u, UL %u), UE_scan_carrier %d\n",
              hw_slot_offset,
              freq_offset,
              UE->rx_total_gain_dB,
              downlink_frequency[0][0]+freq_offset,
              downlink_frequency[0][0]+uplink_frequency_offset[0][0]+freq_offset,
              UE->UE_scan_carrier );

        // rerun with new cell parameters and frequency-offset
        for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
          openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;//-USRP_GAIN_OFFSET;

          if (freq_offset >= 0)
            openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] += abs(freq_offset);
          else
            openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] -= abs(freq_offset);

          openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] =
            openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i]+uplink_frequency_offset[CC_id][i];
          downlink_frequency[CC_id][i] = openair0_cfg[CC_id].rx_freq[i];
        }

        // reconfigure for potentially different bandwidth
        switch(UE->frame_parms.N_RB_DL) {
          case 6:
            openair0_cfg[UE->rf_map.card].sample_rate =1.92e6;
            openair0_cfg[UE->rf_map.card].rx_bw          =.96e6;
            openair0_cfg[UE->rf_map.card].tx_bw          =.96e6;
            //            openair0_cfg[0].rx_gain[0] -= 12;
            break;

          case 25:
            openair0_cfg[UE->rf_map.card].sample_rate =7.68e6;
            openair0_cfg[UE->rf_map.card].rx_bw          =2.5e6;
            openair0_cfg[UE->rf_map.card].tx_bw          =2.5e6;
            //            openair0_cfg[0].rx_gain[0] -= 6;
            break;

          case 50:
            openair0_cfg[UE->rf_map.card].sample_rate =15.36e6;
            openair0_cfg[UE->rf_map.card].rx_bw          =5.0e6;
            openair0_cfg[UE->rf_map.card].tx_bw          =5.0e6;
            //            openair0_cfg[0].rx_gain[0] -= 3;
            break;

          case 100:
            openair0_cfg[UE->rf_map.card].sample_rate=30.72e6;
            openair0_cfg[UE->rf_map.card].rx_bw=10.0e6;
            openair0_cfg[UE->rf_map.card].tx_bw=10.0e6;
            //            openair0_cfg[0].rx_gain[0] -= 0;
            break;
        }

        if (UE->mode != loop_through_memory) {
          UE->rfdevice.trx_set_freq_func(&UE->rfdevice,&openair0_cfg[0],0);
          //UE->rfdevice.trx_set_gains_func(&openair0,&openair0_cfg[0]);
          //UE->rfdevice.trx_stop_func(&UE->rfdevice);
          // sleep(1);
          //nr_init_frame_parms_ue(&UE->frame_parms);
          /*if (UE->rfdevice.trx_start_func(&UE->rfdevice) != 0 ) {
            LOG_E(HW,"Could not start the device\n");
            oai_exit=1;
            }*/
        }

        if (UE->UE_scan_carrier == 1) {
          UE->UE_scan_carrier = 0;
        } else {
          UE->is_synchronized = 1;
        }
      } else {
        // initial sync failed
        // calculate new offset and try again
        if (UE->UE_scan_carrier == 1) {
          if (freq_offset >= 0)
            freq_offset += 100;

          freq_offset *= -1;
          LOG_I(PHY, "[initial_sync] trying carrier off %d Hz, rxgain %d (DL %u, UL %u)\n",
                freq_offset,
                UE->rx_total_gain_dB,
                downlink_frequency[0][0]+freq_offset,
                downlink_frequency[0][0]+uplink_frequency_offset[0][0]+freq_offset );

          for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
            openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+freq_offset;
            openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i]+freq_offset;
            openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;//-USRP_GAIN_OFFSET;

            if (UE->UE_scan_carrier==1)
              openair0_cfg[UE->rf_map.card].autocal[UE->rf_map.chain+i] = 1;
          }

          if (UE->mode != loop_through_memory)
            UE->rfdevice.trx_set_freq_func(&UE->rfdevice,&openair0_cfg[0],0);
        }// initial_sync=0

        break;

      case si:
      default:
        break;
      }
  }
}

361
void processSlotRX( PHY_VARS_NR_UE *UE, UE_nr_rxtx_proc_t *proc) {
laurent's avatar
laurent committed
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
  // Process Rx data for one sub-frame
  if (slot_select_nr(&UE->frame_parms, proc->frame_tx, proc->nr_tti_tx) & NR_DOWNLINK_SLOT) {
    //clean previous FAPI MESSAGE
    UE->rx_ind.number_pdus = 0;
    UE->dci_ind.number_of_dcis = 0;
    //clean previous FAPI MESSAGE
    // call L2 for DL_CONFIG (DCI)
    UE->dcireq.module_id = UE->Mod_id;
    UE->dcireq.gNB_index = 0;
    UE->dcireq.cc_id     = 0;
    UE->dcireq.frame     = proc->frame_rx;
    UE->dcireq.slot      = proc->nr_tti_rx;
    nr_ue_dcireq(&UE->dcireq); //to be replaced with function pointer later
    NR_UE_MAC_INST_t *UE_mac = get_mac_inst(0);
    UE_mac->scheduled_response.dl_config = &UE->dcireq.dl_config_req;
    UE_mac->scheduled_response.slot = proc->nr_tti_rx;
    nr_ue_scheduled_response(&UE_mac->scheduled_response);
    //write_output("uerxdata_frame.m", "uerxdata_frame", UE->common_vars.rxdata[0], UE->frame_parms.samples_per_frame, 1, 1);
    printf("Processing slot %d\n",proc->nr_tti_rx);
#ifdef UE_SLOT_PARALLELISATION
    phy_procedures_slot_parallelization_nrUE_RX( UE, proc, 0, 0, 1, UE->mode, no_relay, NULL );
#else
384
    phy_procedures_nrUE_RX( UE, proc, 0, 1, UE->mode, UE_mac->phy_config.config_req.pbch_config);
laurent's avatar
laurent committed
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    //            printf(">>> nr_ue_pdcch_procedures ended\n");
#endif
  }

  if (UE->mac_enabled==1) {
    //  trigger L2 to run ue_scheduler thru IF module
    //  [TODO] mapping right after NR initial sync
    if(UE->if_inst != NULL && UE->if_inst->ul_indication != NULL) {
      UE->ul_indication.module_id = 0;
      UE->ul_indication.gNB_index = 0;
      UE->ul_indication.cc_id = 0;
      UE->ul_indication.frame = proc->frame_rx;
      UE->ul_indication.slot = proc->nr_tti_rx;
      UE->if_inst->ul_indication(&UE->ul_indication);
    }
  }
}

/*!
 * \brief This is the UE thread for RX subframe n and TX subframe n+4.
 * This thread performs the phy_procedures_UE_RX() on every received slot.
 * then, if TX is enabled it performs TX for n+4.
 * \param arg is a pointer to a \ref PHY_VARS_NR_UE structure.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */

typedef struct processingData_s {
  UE_nr_rxtx_proc_t proc;
  PHY_VARS_NR_UE    *UE;
}  processingData_t;

void UE_processing(void *arg) {
  processingData_t *rxtxD=(processingData_t *) arg;
  UE_nr_rxtx_proc_t *proc = &rxtxD->proc;
  PHY_VARS_NR_UE    *UE   = rxtxD->UE;
420
  processSlotRX(UE, proc);
laurent's avatar
laurent committed
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
  //printf(">>> mac ended\n");
  // Prepare the future Tx data
#if 0
#ifndef NO_RAT_NR

  if (slot_select_nr(&UE->frame_parms, proc->frame_tx, proc->nr_tti_tx) & NR_UPLINK_SLOT)
#else
  if ((subframe_select( &UE->frame_parms, proc->subframe_tx) == SF_UL) ||
      (UE->frame_parms.frame_type == FDD) )
#endif
    if (UE->mode != loop_through_memory)
      phy_procedures_nrUE_TX(UE,proc,0,0,UE->mode,no_relay);

  //phy_procedures_UE_TX(UE,proc,0,0,UE->mode,no_relay);
#endif
#if 0

  if ((subframe_select( &UE->frame_parms, proc->subframe_tx) == SF_S) &&
      (UE->frame_parms.frame_type == TDD))
    if (UE->mode != loop_through_memory)
      //phy_procedures_UE_S_TX(UE,0,0,no_relay);
      updateTimes(current, &t3, 10000, timing_proc_name);

#endif
}

void readFrame(PHY_VARS_NR_UE *UE,  openair0_timestamp *timestamp) {
  void *rxp[NB_ANTENNAS_RX];
  void *dummy_tx[UE->frame_parms.nb_antennas_tx];

  for (int i=0; i<UE->frame_parms.nb_antennas_tx; i++)
    dummy_tx[i]=malloc16_clear(UE->frame_parms.samples_per_subframe*4);

  for(int x=0; x<10; x++) {
    for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++)
      rxp[i] = ((void *)&UE->common_vars.rxdata[i][0]) + 4*x*UE->frame_parms.samples_per_subframe;

    AssertFatal( UE->frame_parms.samples_per_subframe ==
                 UE->rfdevice.trx_read_func(&UE->rfdevice,
                                            timestamp,
                                            rxp,
                                            UE->frame_parms.samples_per_subframe,
                                            UE->frame_parms.nb_antennas_rx), "");
  }

  for (int i=0; i<UE->frame_parms.nb_antennas_tx; i++)
    free(dummy_tx[i]);
}

void trashFrame(PHY_VARS_NR_UE *UE, openair0_timestamp *timestamp) {
  void *dummy_tx[UE->frame_parms.nb_antennas_tx];

  for (int i=0; i<UE->frame_parms.nb_antennas_tx; i++)
    dummy_tx[i]=malloc16_clear(UE->frame_parms.samples_per_subframe*4);

  void *dummy_rx[UE->frame_parms.nb_antennas_rx];

  for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++)
    dummy_rx[i]=malloc16(UE->frame_parms.samples_per_subframe*4);

  for (int sf=0; sf<NR_NUMBER_OF_SUBFRAMES_PER_FRAME; sf++) {
    //      printf("Reading dummy sf %d\n",sf);
    UE->rfdevice.trx_read_func(&UE->rfdevice,
                               timestamp,
                               dummy_rx,
                               UE->frame_parms.samples_per_subframe,
                               UE->frame_parms.nb_antennas_rx);
  }

  for (int i=0; i<UE->frame_parms.nb_antennas_tx; i++)
    free(dummy_tx[i]);

  for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++)
    free(dummy_rx[i]);
}

void syncInFrame(PHY_VARS_NR_UE *UE, openair0_timestamp *timestamp) {
  if (UE->no_timing_correction==0) {
    LOG_I(PHY,"Resynchronizing RX by %d samples (mode = %d)\n",UE->rx_offset,UE->mode);
    void *dummy_tx[UE->frame_parms.nb_antennas_tx];

    for (int i=0; i<UE->frame_parms.nb_antennas_tx; i++)
      dummy_tx[i]=malloc16_clear(UE->frame_parms.samples_per_subframe*4);

    for ( int size=UE->rx_offset ; size > 0 ; size -= UE->frame_parms.samples_per_subframe ) {
      int unitTransfer=size>UE->frame_parms.samples_per_subframe ? UE->frame_parms.samples_per_subframe : size ;
      AssertFatal(unitTransfer ==
                  UE->rfdevice.trx_read_func(&UE->rfdevice,
                                             timestamp,
                                             (void **)UE->common_vars.rxdata,
                                             unitTransfer,
                                             UE->frame_parms.nb_antennas_rx),"");
    }

    for (int i=0; i<UE->frame_parms.nb_antennas_tx; i++)
      free(dummy_tx[i]);
  }
}

int computeSamplesShift(PHY_VARS_NR_UE *UE) {
  if ( getenv("RFSIMULATOR") != 0) {
    LOG_E(PHY,"SET rx_offset %d \n",UE->rx_offset);
    //UE->rx_offset_diff=0;
    return 0;
  }

  // compute TO compensation that should be applied for this frame
  if ( UE->rx_offset < 5*UE->frame_parms.samples_per_slot  &&
       UE->rx_offset > 0 )
    return -1 ;

  if ( UE->rx_offset > 5*UE->frame_parms.samples_per_slot &&
       UE->rx_offset < 10*UE->frame_parms.samples_per_slot )
    return 1;

  return 0;
}

void *UE_thread(void *arg) {
  PHY_VARS_NR_UE *UE = (PHY_VARS_NR_UE *) arg;
  //  int tx_enabled = 0;
  openair0_timestamp timestamp;
  void *rxp[NB_ANTENNAS_RX], *txp[NB_ANTENNAS_TX];
  int start_rx_stream = 0;
  const uint16_t table_sf_slot[20] = {0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9};
  AssertFatal(0== openair0_device_load(&(UE->rfdevice), &openair0_cfg[0]), "");
  UE->rfdevice.host_type = RAU_HOST;
  AssertFatal(UE->rfdevice.trx_start_func(&UE->rfdevice) == 0, "Could not start the device\n");
  notifiedFIFO_t nf;
  initNotifiedFIFO(&nf);
  bool syncRunning=false;
  notifiedFIFO_elt_t *syncMsg=newNotifiedFIFO_elt(sizeof(syncData_t),0,&nf,UE_synch);
  syncData_t *syncD=(syncData_t *)NotifiedFifoData(syncMsg);
  syncD->UE=UE;
  int nbSlotProcessing=0;
  int thread_idx=0;
  notifiedFIFO_elt_t *processingMsg[RX_NB_TH];

  for (int i=0; i<RX_NB_TH; i++) {
    processingMsg[i]= newNotifiedFIFO_elt(sizeof(processingData_t), 0,&nf,UE_processing);
    processingData_t *tmp=(processingData_t *)NotifiedFifoData(processingMsg[i]);
    tmp->UE=UE;
  }

  const int nb_slot_frame = 10*UE->frame_parms.slots_per_subframe;
  int absolute_slot=-1;

  while (!oai_exit) {
    if (!syncD->UE->is_synchronized) {
      if (syncRunning) {
        notifiedFIFO_elt_t *res=tryPullTpool(&nf, Tpool);

        if (res) {
          syncRunning=false;
        } else
          trashFrame(UE, &timestamp);
      } else {
        readFrame(UE, &timestamp);
        pushTpool(Tpool, syncMsg);
        syncRunning=true;
      }

      continue;
    }

    if (start_rx_stream==0) {
      start_rx_stream=1;
      syncInFrame(UE, &timestamp);
      UE->rx_offset=0;
      UE->time_sync_cell=0;
      //printf("first stream frame rx %d\n",UE->proc.proc_rxtx[0].frame_rx);
      // read in first symbol
      AssertFatal (UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0 ==
                   UE->rfdevice.trx_read_func(&UE->rfdevice,
                                              &timestamp,
                                              (void **)UE->common_vars.rxdata,
                                              UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0,
                                              UE->frame_parms.nb_antennas_rx),"");
      continue;
    }

    absolute_slot++;
    thread_idx = absolute_slot % RX_NB_TH;
    int slot_nr=absolute_slot % nb_slot_frame;
    UE_nr_rxtx_proc_t *proc=&(((processingData_t *)NotifiedFifoData(processingMsg[thread_idx]))->proc);
    // update thread index for received subframe
    proc->nr_tti_rx= slot_nr;
    UE->current_thread_id[slot_nr] = thread_idx;
    proc->subframe_rx=table_sf_slot[slot_nr];
    proc->nr_tti_tx = (absolute_slot + DURATION_RX_TO_TX) % nb_slot_frame;
    proc->subframe_tx=proc->nr_tti_rx;
    proc->frame_rx = ( absolute_slot/nb_slot_frame ) % MAX_FRAME_NUMBER;
    proc->frame_tx = ( (absolute_slot + DURATION_RX_TO_TX) /nb_slot_frame ) % MAX_FRAME_NUMBER;
    LOG_D(PHY,"Process slot %d thread Idx %d \n", slot_nr, thread_idx);

    for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++)
      rxp[i] = (void *)&UE->common_vars.rxdata[i][UE->frame_parms.ofdm_symbol_size+
               UE->frame_parms.nb_prefix_samples0+
               slot_nr*UE->frame_parms.samples_per_slot];

    for (int i=0; i<UE->frame_parms.nb_antennas_tx; i++)
      txp[i] = (void *)&UE->common_vars.txdata[i][proc->nr_tti_tx*UE->frame_parms.samples_per_slot];

    int readBlockSize, writeBlockSize;

    if (slot_nr<(nb_slot_frame - 1)) {
      readBlockSize=UE->frame_parms.samples_per_slot;
      writeBlockSize=UE->frame_parms.samples_per_slot;
    } else {
      UE->rx_offset_diff = computeSamplesShift(UE);
      readBlockSize=UE->frame_parms.samples_per_slot -
                    UE->frame_parms.ofdm_symbol_size -
                    UE->frame_parms.nb_prefix_samples0 -
                    UE->rx_offset_diff;
      writeBlockSize=UE->frame_parms.samples_per_slot -
                     UE->rx_offset_diff;
    }

    AssertFatal(readBlockSize ==
                UE->rfdevice.trx_read_func(&UE->rfdevice,
                                           &timestamp,
                                           rxp,
                                           readBlockSize,
                                           UE->frame_parms.nb_antennas_rx),"");
    AssertFatal( writeBlockSize ==
                 UE->rfdevice.trx_write_func(&UE->rfdevice,
                     timestamp+
                     (2*UE->frame_parms.samples_per_slot) -
                     UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0 -
                     openair0_cfg[0].tx_sample_advance,
                     txp,
                     writeBlockSize,
                     UE->frame_parms.nb_antennas_tx,
                     1),"");

    if( slot_nr==(nb_slot_frame-1)) {
      // read in first symbol of next frame and adjust for timing drift
      int first_symbols=writeBlockSize-readBlockSize;

      if ( first_symbols > 0 )
        AssertFatal(first_symbols ==
                    UE->rfdevice.trx_read_func(&UE->rfdevice,
                                               &timestamp,
                                               (void **)UE->common_vars.rxdata,
                                               first_symbols,
                                               UE->frame_parms.nb_antennas_rx),"");
      else
        LOG_E(PHY,"can't compensate: diff =%d\n", first_symbols);
    }

    proc->timestamp_tx = timestamp+
                         (DURATION_RX_TO_TX*UE->frame_parms.samples_per_slot)-
                         UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0;

    if (getenv("RFSIMULATOR")) {
      // FixMe: Wait previous thread is done, because race conditions seems too bad
      // in case of actual RF board, the overlap between threads mitigate the issue
      while (!tryPullTpool(&nf, Tpool)) {
        nbSlotProcessing--;
        usleep(200);
      }
    }

    while (nbSlotProcessing >= RX_NB_TH && !tryPullTpool(&nf, Tpool)) {
      nbSlotProcessing--;
      usleep(200);
    }

    pushTpool(Tpool, processingMsg[thread_idx]);
  } // while !oai_exit

  return NULL;
}

void init_UE(int nb_inst) {
  int inst;
  NR_UE_MAC_INST_t *mac_inst;
  pthread_t threads[nb_inst];
  pthread_attr_t attr;
  pthread_attr_init(&attr);
  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
  pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
  pthread_attr_setschedpolicy(&attr, SCHED_RR);
  struct sched_param sched;
  sched.sched_priority = sched_get_priority_max(SCHED_RR)-1;
  pthread_attr_setschedparam(&attr, &sched);
  
  for (inst=0; inst < nb_inst; inst++) {
    //    UE->rfdevice.type      = NONE_DEV;
    //PHY_VARS_NR_UE *UE = PHY_vars_UE_g[inst][0];
    LOG_I(PHY,"Initializing memory for UE instance %d (%p)\n",inst,PHY_vars_UE_g[inst]);
    PHY_vars_UE_g[inst][0] = init_nr_ue_vars(NULL,inst,0);
    PHY_VARS_NR_UE *UE = PHY_vars_UE_g[inst][0];
    AssertFatal((UE->if_inst = nr_ue_if_module_init(inst)) != NULL, "can not initial IF module\n");
    nr_l3_init_ue();
    nr_l2_init_ue();
    mac_inst = get_mac_inst(0);
    mac_inst->if_module = UE->if_inst;
    UE->if_inst->scheduled_response = nr_ue_scheduled_response;
    UE->if_inst->phy_config_request = nr_ue_phy_config_request;
    LOG_I(PHY,"Intializing UE Threads for instance %d (%p,%p)...\n",inst,PHY_vars_UE_g[inst],PHY_vars_UE_g[inst][0]);
    //init_UE_threads(inst);
    //UE = PHY_vars_UE_g[inst][0];
    AssertFatal(0 == pthread_create(&threads[inst],
                                    &attr,
                                    UE_thread,
                                    (void *)UE), "");
  }

  printf("UE threads created by %ld\n", gettid());
}