nr_polar_decoder.c 24.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.1  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
18
 * For more information about the OpenAirInterface (OAI) Software Alliance
19 20
 *      contact@openairinterface.org
 */
Guy De Souza's avatar
Guy De Souza committed
21

22 23
/*!\file PHY/CODING/nrPolar_tools/nr_polar_decoder.c
 * \brief
24
 * \author Raymond Knopp, Turker Yilmaz
25 26 27
 * \date 2018
 * \version 0.1
 * \company EURECOM
28
 * \email raymond.knopp@eurecom.fr, turker.yilmaz@eurecom.fr
29 30 31 32
 * \note
 * \warning
*/

Guy De Souza's avatar
Guy De Souza committed
33 34 35 36 37 38
/*
 * Return values:
 *  0 --> Success
 * -1 --> All list entries have failed the CRC checks
 */

39
#include "PHY/CODING/nrPolar_tools/nr_polar_defs.h"
40
#include "assertions.h"
41

42 43 44
int8_t polar_decoder(double *input,
					 uint32_t *out,
					 t_nrPolar_params *polarParams,
45 46
					 uint8_t listSize)
{
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  //Assumes no a priori knowledge.
  uint8_t ***bit = nr_alloc_uint8_3D_array(polarParams->N, (polarParams->n+1), 2*listSize);
  uint8_t **bitUpdated = nr_alloc_uint8_2D_array(polarParams->N, (polarParams->n+1)); //0=False, 1=True
  uint8_t **llrUpdated = nr_alloc_uint8_2D_array(polarParams->N, (polarParams->n+1)); //0=False, 1=True
  double ***llr = nr_alloc_double_3D_array(polarParams->N, (polarParams->n+1), 2*listSize);
  uint8_t **crcChecksum = nr_alloc_uint8_2D_array(polarParams->crcParityBits, 2*listSize);
  double *pathMetric = malloc(sizeof(double)*(2*listSize));
  uint8_t *crcState = malloc(sizeof(uint8_t)*(2*listSize)); //0=False, 1=True

  for (int i=0; i<(2*listSize); i++) {
    pathMetric[i] = 0;
    crcState[i]=1;
  }

  for (int i=0; i<polarParams->N; i++) {
    llrUpdated[i][polarParams->n]=1;
    bitUpdated[i][0]=((polarParams->information_bit_pattern[i]+1) % 2);
  }

  uint8_t **extended_crc_generator_matrix = malloc(polarParams->K * sizeof(uint8_t *)); //G_P3
  uint8_t **tempECGM = malloc(polarParams->K * sizeof(uint8_t *)); //G_P2

  for (int i = 0; i < polarParams->K; i++) {
    extended_crc_generator_matrix[i] = malloc(polarParams->crcParityBits * sizeof(uint8_t));
    tempECGM[i] = malloc(polarParams->crcParityBits * sizeof(uint8_t));
  }

  for (int i=0; i<polarParams->payloadBits; i++) {
    for (int j=0; j<polarParams->crcParityBits; j++) {
      tempECGM[i][j]=polarParams->crc_generator_matrix[i][j];
    }
  }

  for (int i=polarParams->payloadBits; i<polarParams->K; i++) {
    for (int j=0; j<polarParams->crcParityBits; j++) {
      if( (i-polarParams->payloadBits) == j ) {
        tempECGM[i][j]=1;
      } else {
        tempECGM[i][j]=0;
      }
    }
  }

  for (int i=0; i<polarParams->K; i++) {
    for (int j=0; j<polarParams->crcParityBits; j++) {
      extended_crc_generator_matrix[i][j]=tempECGM[polarParams->interleaving_pattern[i]][j];
    }
  }

  //The index of the last 1-valued bit that appears in each column.
  uint16_t last1ind[polarParams->crcParityBits];

  for (int j=0; j<polarParams->crcParityBits; j++) {
    for (int i=0; i<polarParams->K; i++) {
      if (extended_crc_generator_matrix[i][j]==1) last1ind[j]=i;
    }
  }

  double *d_tilde = malloc(sizeof(double) * polarParams->N);
  nr_polar_rate_matching(input, d_tilde, polarParams->rate_matching_pattern, polarParams->K, polarParams->N, polarParams->encoderLength);

  for (int j = 0; j < polarParams->N; j++) llr[j][polarParams->n][0]=d_tilde[j];

  /*
   * SCL polar decoder.
   */
  uint32_t nonFrozenBit=0;
  uint8_t currentListSize=1;
  uint8_t decoderIterationCheck=0;
  int16_t checkCrcBits=-1;
  uint8_t listIndex[2*listSize], copyIndex;

  for (uint16_t currentBit=0; currentBit<polarParams->N; currentBit++) {
120
    updateLLR(llr, llrUpdated, bit, bitUpdated, currentListSize, currentBit, 0, polarParams->N, (polarParams->n+1));
121 122

    if (polarParams->information_bit_pattern[currentBit]==0) { //Frozen bit.
123
      updatePathMetric(pathMetric, llr, currentListSize, 0, currentBit);
124
    } else { //Information or CRC bit.
125
      updatePathMetric2(pathMetric, llr, currentListSize, currentBit);
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

      for (int i = 0; i < currentListSize; i++) {
        for (int j = 0; j < polarParams->N; j++) {
          for (int k = 0; k < (polarParams->n+1); k++) {
            bit[j][k][i+currentListSize]=bit[j][k][i];
            llr[j][k][i+currentListSize]=llr[j][k][i];
          }
        }
      }

      for (int i = 0; i < currentListSize; i++) {
        bit[currentBit][0][i]=0;
        crcState[i+currentListSize]=crcState[i];
      }

      for (int i = currentListSize; i < 2*currentListSize; i++) bit[currentBit][0][i]=1;

      bitUpdated[currentBit][0]=1;
      updateCrcChecksum2(crcChecksum, extended_crc_generator_matrix, currentListSize, nonFrozenBit, polarParams->crcParityBits);
      currentListSize*=2;

      //Keep only the best "listSize" number of entries.
      if (currentListSize > listSize) {
        for (uint8_t i = 0; i < 2*listSize; i++) listIndex[i]=i;

        nr_sort_asc_double_1D_array_ind(pathMetric, listIndex, currentListSize);
        //sort listIndex[listSize, ..., 2*listSize-1] in descending order.
        uint8_t swaps, tempInd;

        for (uint8_t i = 0; i < listSize; i++) {
          swaps = 0;

          for (uint8_t j = listSize; j < (2*listSize - i) - 1; j++) {
            if (listIndex[j+1] > listIndex[j]) {
              tempInd = listIndex[j];
              listIndex[j] = listIndex[j + 1];
              listIndex[j + 1] = tempInd;
              swaps++;
            }
          }

          if (swaps == 0)
            break;
        }

        //First, backup the best "listSize" number of entries.
        for (int k=(listSize-1); k>0; k--) {
          for (int i=0; i<polarParams->N; i++) {
            for (int j=0; j<(polarParams->n+1); j++) {
              bit[i][j][listIndex[(2*listSize-1)-k]]=bit[i][j][listIndex[k]];
              llr[i][j][listIndex[(2*listSize-1)-k]]=llr[i][j][listIndex[k]];
            }
          }
        }

        for (int k=(listSize-1); k>0; k--) {
          for (int i = 0; i < polarParams->crcParityBits; i++) {
            crcChecksum[i][listIndex[(2*listSize-1)-k]] = crcChecksum[i][listIndex[k]];
          }
        }

        for (int k=(listSize-1); k>0; k--) crcState[listIndex[(2*listSize-1)-k]]=crcState[listIndex[k]];

        //Copy the best "listSize" number of entries to the first indices.
        for (int k = 0; k < listSize; k++) {
          if (k > listIndex[k]) {
            copyIndex = listIndex[(2*listSize-1)-k];
          } else { //Use the backup.
            copyIndex = listIndex[k];
          }

          for (int i = 0; i < polarParams->N; i++) {
            for (int j = 0; j < (polarParams->n + 1); j++) {
              bit[i][j][k] = bit[i][j][copyIndex];
              llr[i][j][k] = llr[i][j][copyIndex];
            }
          }
        }

        for (int k = 0; k < listSize; k++) {
          if (k > listIndex[k]) {
            copyIndex = listIndex[(2*listSize-1)-k];
          } else { //Use the backup.
            copyIndex = listIndex[k];
          }

          for (int i = 0; i < polarParams->crcParityBits; i++) {
            crcChecksum[i][k]=crcChecksum[i][copyIndex];
          }
        }

        for (int k = 0; k < listSize; k++) {
          if (k > listIndex[k]) {
            copyIndex = listIndex[(2*listSize-1)-k];
          } else { //Use the backup.
            copyIndex = listIndex[k];
          }

          crcState[k]=crcState[copyIndex];
        }

        currentListSize = listSize;
      }

      for (int i=0; i<polarParams->crcParityBits; i++) {
        if (last1ind[i]==nonFrozenBit) {
          checkCrcBits=i;
          break;
        }
      }

      if ( checkCrcBits > (-1) ) {
        for (uint8_t i = 0; i < currentListSize; i++) {
          if (crcChecksum[checkCrcBits][i]==1) {
            crcState[i]=0; //0=False, 1=True
          }
        }
      }

      for (uint8_t i = 0; i < currentListSize; i++) decoderIterationCheck+=crcState[i];

      if (decoderIterationCheck==0) {
        //perror("[SCL polar decoder] All list entries have failed the CRC checks.");
        free(d_tilde);
        free(pathMetric);
        free(crcState);
        nr_free_uint8_3D_array(bit, polarParams->N, (polarParams->n+1));
        nr_free_double_3D_array(llr, polarParams->N, (polarParams->n+1));
        nr_free_uint8_2D_array(crcChecksum, polarParams->crcParityBits);
        return(-1);
      }

      nonFrozenBit++;
      decoderIterationCheck=0;
      checkCrcBits=-1;
    }
  }

  for (uint8_t i = 0; i < 2*listSize; i++) listIndex[i]=i;

  nr_sort_asc_double_1D_array_ind(pathMetric, listIndex, currentListSize);

  for (uint8_t i = 0; i < fmin(listSize, (pow(2,polarParams->crcCorrectionBits)) ); i++) {
    if ( crcState[listIndex[i]] == 1 ) {
      for (int j = 0; j < polarParams->N; j++) polarParams->nr_polar_U[j]=bit[j][0][listIndex[i]];

      //Extract the information bits (û to ĉ)
      nr_polar_info_bit_extraction(polarParams->nr_polar_U, polarParams->nr_polar_CPrime, polarParams->information_bit_pattern, polarParams->N);
      //Deinterleaving (ĉ to b)
      nr_polar_deinterleaver(polarParams->nr_polar_CPrime, polarParams->nr_polar_B, polarParams->interleaving_pattern, polarParams->K);

      //Remove the CRC (â)
      for (int j = 0; j < polarParams->payloadBits; j++) polarParams->nr_polar_A[j]=polarParams->nr_polar_B[j];

      break;
    }
  }

  free(d_tilde);
  free(pathMetric);
  free(crcState);
  nr_free_uint8_3D_array(bit, polarParams->N, (polarParams->n+1));
  nr_free_double_3D_array(llr, polarParams->N, (polarParams->n+1));
  nr_free_uint8_2D_array(crcChecksum, polarParams->crcParityBits);
  nr_free_uint8_2D_array(extended_crc_generator_matrix, polarParams->K);
  nr_free_uint8_2D_array(tempECGM, polarParams->K);
  /*
   * Return bits.
   */
295
  nr_byte2bit_uint8_32(polarParams->nr_polar_A, polarParams->payloadBits, out);
296
  return(0);
297 298
}

299
int8_t polar_decoder_dci(double *input,
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
                         uint32_t *out,
                         t_nrPolar_params *polarParams,
                         uint8_t listSize,
                         uint16_t n_RNTI) {
  uint8_t ***bit = nr_alloc_uint8_3D_array(polarParams->N, (polarParams->n+1), 2*listSize);
  uint8_t **bitUpdated = nr_alloc_uint8_2D_array(polarParams->N, (polarParams->n+1)); //0=False, 1=True
  uint8_t **llrUpdated = nr_alloc_uint8_2D_array(polarParams->N, (polarParams->n+1)); //0=False, 1=True
  double ***llr = nr_alloc_double_3D_array(polarParams->N, (polarParams->n+1), 2*listSize);
  uint8_t **crcChecksum = nr_alloc_uint8_2D_array(polarParams->crcParityBits, 2*listSize);
  double *pathMetric = malloc(sizeof(double)*(2*listSize));
  uint8_t *crcState = malloc(sizeof(uint8_t)*(2*listSize)); //0=False, 1=True
  uint8_t extended_crc_scrambling_pattern[polarParams->crcParityBits];

  for (int i=0; i<(2*listSize); i++) {
    pathMetric[i] = 0;
    crcState[i]=1;
  }

  for (int i=0; i<polarParams->N; i++) {
    llrUpdated[i][polarParams->n]=1;
    bitUpdated[i][0]=((polarParams->information_bit_pattern[i]+1) % 2);
  }

  uint8_t **extended_crc_generator_matrix = malloc(polarParams->K * sizeof(uint8_t *)); //G_P3: K-by-P
  uint8_t **tempECGM = malloc(polarParams->K * sizeof(uint8_t *)); //G_P2: K-by-P

  for (int i = 0; i < polarParams->K; i++) {
    extended_crc_generator_matrix[i] = malloc(polarParams->crcParityBits * sizeof(uint8_t));
    tempECGM[i] = malloc(polarParams->crcParityBits * sizeof(uint8_t));
  }

  for (int i=0; i<polarParams->payloadBits; i++) {
    for (int j=0; j<polarParams->crcParityBits; j++) {
      tempECGM[i][j]=polarParams->crc_generator_matrix[i+polarParams->crcParityBits][j];
    }
  }

  for (int i=polarParams->payloadBits; i<polarParams->K; i++) {
    for (int j=0; j<polarParams->crcParityBits; j++) {
      if( (i-polarParams->payloadBits) == j ) {
        tempECGM[i][j]=1;
      } else {
        tempECGM[i][j]=0;
      }
    }
  }

  for (int i=0; i<polarParams->K; i++) {
    for (int j=0; j<polarParams->crcParityBits; j++) {
      extended_crc_generator_matrix[i][j]=tempECGM[polarParams->interleaving_pattern[i]][j];
    }
  }

  //The index of the last 1-valued bit that appears in each column.
  uint16_t last1ind[polarParams->crcParityBits];

  for (int j=0; j<polarParams->crcParityBits; j++) {
    for (int i=0; i<polarParams->K; i++) {
      if (extended_crc_generator_matrix[i][j]==1) last1ind[j]=i;
    }
  }

  for (int i=0; i<8; i++) extended_crc_scrambling_pattern[i]=0;

  for (int i=8; i<polarParams->crcParityBits; i++) {
    extended_crc_scrambling_pattern[i]=(n_RNTI>>(23-i))&1;
  }

  double *d_tilde = malloc(sizeof(double) * polarParams->N);
  nr_polar_rate_matching(input, d_tilde, polarParams->rate_matching_pattern, polarParams->K, polarParams->N, polarParams->encoderLength);

  for (int j = 0; j < polarParams->N; j++) llr[j][polarParams->n][0]=d_tilde[j];

  /*
   * SCL polar decoder.
   */

  for (int i=0; i<polarParams->crcParityBits; i++) {
    for (int j=0; j<polarParams->crcParityBits; j++) crcChecksum[i][0]=crcChecksum[i][0]+polarParams->crc_generator_matrix[j][i];

    crcChecksum[i][0]=(crcChecksum[i][0]%2);
  }

  uint32_t nonFrozenBit=0;
  uint8_t currentListSize=1;
  uint8_t decoderIterationCheck=0;
  int16_t checkCrcBits=-1;
  uint8_t listIndex[2*listSize], copyIndex;

  for (uint16_t currentBit=0; currentBit<polarParams->N; currentBit++) {
390
    updateLLR(llr, llrUpdated, bit, bitUpdated, currentListSize, currentBit, 0, polarParams->N, (polarParams->n+1));
391 392

    if (polarParams->information_bit_pattern[currentBit]==0) { //Frozen bit.
393
      updatePathMetric(pathMetric, llr, currentListSize, 0, currentBit);
394
    } else { //Information or CRC bit.
395
      updatePathMetric2(pathMetric, llr, currentListSize, currentBit);
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

      for (int i = 0; i < currentListSize; i++) {
        for (int j = 0; j < polarParams->N; j++) {
          for (int k = 0; k < (polarParams->n+1); k++) {
            bit[j][k][i+currentListSize]=bit[j][k][i];
            llr[j][k][i+currentListSize]=llr[j][k][i];
          }
        }
      }

      for (int i = 0; i < currentListSize; i++) {
        bit[currentBit][0][i]=0;
        crcState[i+currentListSize]=crcState[i];
      }

      for (int i = currentListSize; i < 2*currentListSize; i++) bit[currentBit][0][i]=1;

      bitUpdated[currentBit][0]=1;
      updateCrcChecksum2(crcChecksum, extended_crc_generator_matrix, currentListSize, nonFrozenBit, polarParams->crcParityBits);
      currentListSize*=2;

      //Keep only the best "listSize" number of entries.
      if (currentListSize > listSize) {
        for (uint8_t i = 0; i < 2*listSize; i++) listIndex[i]=i;

        nr_sort_asc_double_1D_array_ind(pathMetric, listIndex, currentListSize);
        //sort listIndex[listSize, ..., 2*listSize-1] in descending order.
        uint8_t swaps, tempInd;

        for (uint8_t i = 0; i < listSize; i++) {
          swaps = 0;

          for (uint8_t j = listSize; j < (2*listSize - i) - 1; j++) {
            if (listIndex[j+1] > listIndex[j]) {
              tempInd = listIndex[j];
              listIndex[j] = listIndex[j + 1];
              listIndex[j + 1] = tempInd;
              swaps++;
            }
          }

          if (swaps == 0)
            break;
        }

        //First, backup the best "listSize" number of entries.
        for (int k=(listSize-1); k>0; k--) {
          for (int i=0; i<polarParams->N; i++) {
            for (int j=0; j<(polarParams->n+1); j++) {
              bit[i][j][listIndex[(2*listSize-1)-k]]=bit[i][j][listIndex[k]];
              llr[i][j][listIndex[(2*listSize-1)-k]]=llr[i][j][listIndex[k]];
            }
          }
        }

        for (int k=(listSize-1); k>0; k--) {
          for (int i = 0; i < polarParams->crcParityBits; i++) {
            crcChecksum[i][listIndex[(2*listSize-1)-k]] = crcChecksum[i][listIndex[k]];
          }
        }

        for (int k=(listSize-1); k>0; k--) crcState[listIndex[(2*listSize-1)-k]]=crcState[listIndex[k]];

        //Copy the best "listSize" number of entries to the first indices.
        for (int k = 0; k < listSize; k++) {
          if (k > listIndex[k]) {
            copyIndex = listIndex[(2*listSize-1)-k];
          } else { //Use the backup.
            copyIndex = listIndex[k];
          }

          for (int i = 0; i < polarParams->N; i++) {
            for (int j = 0; j < (polarParams->n + 1); j++) {
              bit[i][j][k] = bit[i][j][copyIndex];
              llr[i][j][k] = llr[i][j][copyIndex];
            }
          }
        }

        for (int k = 0; k < listSize; k++) {
          if (k > listIndex[k]) {
            copyIndex = listIndex[(2*listSize-1)-k];
          } else { //Use the backup.
            copyIndex = listIndex[k];
          }

          for (int i = 0; i < polarParams->crcParityBits; i++) {
            crcChecksum[i][k]=crcChecksum[i][copyIndex];
          }
        }

        for (int k = 0; k < listSize; k++) {
          if (k > listIndex[k]) {
            copyIndex = listIndex[(2*listSize-1)-k];
          } else { //Use the backup.
            copyIndex = listIndex[k];
          }

          crcState[k]=crcState[copyIndex];
        }

        currentListSize = listSize;
      }

      for (int i=0; i<polarParams->crcParityBits; i++) {
        if (last1ind[i]==nonFrozenBit) {
          checkCrcBits=i;
          break;
        }
      }

      if ( checkCrcBits > (-1) ) {
        for (uint8_t i = 0; i < currentListSize; i++) {
          if (crcChecksum[checkCrcBits][i]!=extended_crc_scrambling_pattern[checkCrcBits]) {
            crcState[i]=0; //0=False, 1=True
          }
        }
      }

      for (uint8_t i = 0; i < currentListSize; i++) decoderIterationCheck+=crcState[i];

      if (decoderIterationCheck==0) {
        //perror("[SCL polar decoder] All list entries have failed the CRC checks.");
        free(d_tilde);
        free(pathMetric);
        free(crcState);
        nr_free_uint8_3D_array(bit, polarParams->N, (polarParams->n+1));
        nr_free_double_3D_array(llr, polarParams->N, (polarParams->n+1));
        nr_free_uint8_2D_array(crcChecksum, polarParams->crcParityBits);
        return(-1);
      }

      nonFrozenBit++;
      decoderIterationCheck=0;
      checkCrcBits=-1;
    }
  }

  for (uint8_t i = 0; i < 2*listSize; i++) listIndex[i]=i;

  nr_sort_asc_double_1D_array_ind(pathMetric, listIndex, currentListSize);

  for (uint8_t i = 0; i < fmin(listSize, (pow(2,polarParams->crcCorrectionBits)) ); i++) {
    if ( crcState[listIndex[i]] == 1 ) {
      for (int j = 0; j < polarParams->N; j++) polarParams->nr_polar_U[j]=bit[j][0][listIndex[i]];

      //Extract the information bits (û to ĉ)
      nr_polar_info_bit_extraction(polarParams->nr_polar_U, polarParams->nr_polar_CPrime, polarParams->information_bit_pattern, polarParams->N);
      //Deinterleaving (ĉ to b)
      nr_polar_deinterleaver(polarParams->nr_polar_CPrime, polarParams->nr_polar_B, polarParams->interleaving_pattern, polarParams->K);

      //Remove the CRC (â)
      for (int j = 0; j < polarParams->payloadBits; j++) polarParams->nr_polar_A[j]=polarParams->nr_polar_B[j];

      break;
    }
  }

  free(d_tilde);
  free(pathMetric);
  free(crcState);
  nr_free_uint8_3D_array(bit, polarParams->N, (polarParams->n+1));
  nr_free_double_3D_array(llr, polarParams->N, (polarParams->n+1));
  nr_free_uint8_2D_array(crcChecksum, polarParams->crcParityBits);
  nr_free_uint8_2D_array(extended_crc_generator_matrix, polarParams->K);
  nr_free_uint8_2D_array(tempECGM, polarParams->K);
  /*
   * Return bits.
   */
565
  nr_byte2bit_uint8_32(polarParams->nr_polar_A, polarParams->payloadBits, out);
566
  return(0);
567 568
}

569 570
void init_polar_deinterleaver_table(t_nrPolar_params *polarParams) {
  AssertFatal(polarParams->K > 32, "K = %d < 33, is not supported yet\n",polarParams->K);
571 572
  AssertFatal(polarParams->K < 129, "K = %d > 128, is not supported yet\n",polarParams->K);
  int bit_i,ip,ipmod64;
573 574 575
  int numbytes = polarParams->K>>3;
  int residue = polarParams->K&7;
  int numbits;
576

577
  if (residue>0) numbytes++;
578 579

  for (int byte=0; byte<numbytes; byte++) {
580 581
    if (byte<(polarParams->K>>3)) numbits=8;
    else numbits=residue;
582 583

    for (int i=0; i<numbits; i++) {
584 585
      // flip bit endian for B
      ip=polarParams->K - 1 - polarParams->interleaving_pattern[(8*byte)+i];
586
#if 0
587 588
      printf("byte %d, i %d => ip %d\n",byte,i,ip);
#endif
589 590
      ipmod64 = ip&63;
      AssertFatal(ip<128,"ip = %d\n",ip);
591 592 593 594 595 596

      for (int val=0; val<256; val++) {
        bit_i=(val>>i)&1;

        if (ip<64) polarParams->B_tab0[byte][val] |= (((uint64_t)bit_i)<<ipmod64);
        else       polarParams->B_tab1[byte][val] |= (((uint64_t)bit_i)<<ipmod64);
597 598 599 600
      }
    }
  }
}
601

602
uint32_t polar_decoder_int16(int16_t *input,
603
                             uint64_t *out,
604
                             uint8_t ones_flag,
605 606
                             const t_nrPolar_params *polarParams)
{
607
  int16_t d_tilde[polarParams->N];// = malloc(sizeof(double) * polarParams->N);
608
  nr_polar_rate_matching_int16(input, d_tilde, polarParams->rate_matching_pattern, polarParams->K, polarParams->N, polarParams->encoderLength);
Raymond Knopp's avatar
Raymond Knopp committed
609

610
  for (int i=0; i<polarParams->N; i++) {
611 612 613
    if (d_tilde[i]<-128) d_tilde[i]=-128;
    else if (d_tilde[i]>127) d_tilde[i]=128;
  }
614

615
  memcpy((void *)&polarParams->tree.root->alpha[0],(void *)&d_tilde[0],sizeof(int16_t)*polarParams->N);
616 617
  generic_polar_decoder(polarParams,polarParams->tree.root);
  //Extract the information bits (û to ĉ)
618 619 620 621
  uint64_t Cprime[4]= {0,0,0,0};
  uint64_t B[4]= {0,0,0,0};

  for (int i=0; i<polarParams->K; i++) Cprime[i>>6] = Cprime[i>>6] | ((uint64_t)polarParams->nr_polar_U[polarParams->Q_I_N[i]])<<(i&63);
622

623
  //Deinterleaving (ĉ to b)
624 625
  uint8_t *Cprimebyte = (uint8_t *)Cprime;

626 627
  if (polarParams->K<65) {
    B[0] = polarParams->B_tab0[0][Cprimebyte[0]] |
628 629 630 631 632 633 634 635
           polarParams->B_tab0[1][Cprimebyte[1]] |
           polarParams->B_tab0[2][Cprimebyte[2]] |
           polarParams->B_tab0[3][Cprimebyte[3]] |
           polarParams->B_tab0[4][Cprimebyte[4]] |
           polarParams->B_tab0[5][Cprimebyte[5]] |
           polarParams->B_tab0[6][Cprimebyte[6]] |
           polarParams->B_tab0[7][Cprimebyte[7]];
  } else if (polarParams->K<129) {
636
    int len = polarParams->K/8;
637

638
    if ((polarParams->K&7) > 0) len++;
639 640

    for (int k=0; k<len; k++) {
641 642 643 644
      B[0] |= polarParams->B_tab0[k][Cprimebyte[k]];
      B[1] |= polarParams->B_tab1[k][Cprimebyte[k]];
    }
  }
645

646
  int len=polarParams->payloadBits;
647
  //int len_mod64=len&63;
648
  int crclen = polarParams->crcParityBits;
649
  uint64_t rxcrc=B[0]&((1<<crclen)-1);
650 651
  uint32_t crc = 0;
  uint64_t Ar = 0;
652
  AssertFatal(len<65,"A must be less than 65 bits\n");
653

654 655 656 657
  // appending 24 ones before a0 for DCI as stated in 38.212 7.3.2
  uint8_t offset = 0;
  if (ones_flag) offset = 3;

658 659
  if (len<=32) {
    Ar = (uint32_t)(B[0]>>crclen);
660 661 662 663 664 665
    uint8_t A32_flip[4+offset];
    if (ones_flag) {
      A32_flip[0] = 0xff;
      A32_flip[1] = 0xff;
      A32_flip[2] = 0xff;
    }
666
    uint32_t Aprime= (uint32_t)(Ar<<(32-len));
667 668 669 670 671
    A32_flip[0+offset]=((uint8_t *)&Aprime)[3];
    A32_flip[1+offset]=((uint8_t *)&Aprime)[2];
    A32_flip[2+offset]=((uint8_t *)&Aprime)[1];
    A32_flip[3+offset]=((uint8_t *)&Aprime)[0];
    crc = (uint64_t)(crc24c(A32_flip,8*offset+len)>>8);
672
  } else if (len<=64) {
673
    Ar = (B[0]>>crclen) | (B[1]<<(64-crclen));;
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    uint8_t A64_flip[8+offset];
    if (ones_flag) {
      A64_flip[0] = 0xff;
      A64_flip[1] = 0xff;
      A64_flip[2] = 0xff;
    }
    uint64_t Aprime= (uint64_t)(Ar<<(64-len));
    A64_flip[0+offset]=((uint8_t *)&Aprime)[7];
    A64_flip[1+offset]=((uint8_t *)&Aprime)[6];
    A64_flip[2+offset]=((uint8_t *)&Aprime)[5];
    A64_flip[3+offset]=((uint8_t *)&Aprime)[4];
    A64_flip[4+offset]=((uint8_t *)&Aprime)[3];
    A64_flip[5+offset]=((uint8_t *)&Aprime)[2];
    A64_flip[6+offset]=((uint8_t *)&Aprime)[1];
    A64_flip[7+offset]=((uint8_t *)&Aprime)[0];
    crc = (uint64_t)(crc24c(A64_flip,8*offset+len)>>8);
690
  }
691

692
#if 0
693
  printf("A %llx B %llx|%llx Cprime %llx|%llx  (crc %x,rxcrc %llx %d)\n",
694 695 696
         Ar,
         B[1],B[0],Cprime[1],Cprime[0],crc,
         rxcrc,polarParams->payloadBits);
697
#endif
698
  out[0]=Ar;
699
  return(crc^rxcrc);
Guy De Souza's avatar
Guy De Souza committed
700
}