coding_defs.h 21.2 KB
Newer Older
1 2 3 4 5
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
6
 * the OAI Public License, Version 1.1  (the "License"); you may not use this file
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

22 23 24
/* file: PHY/CODING/defs.h
   purpose: Top-level definitions, data types and function prototypes for openairinterface coding blocks
   author: raymond.knopp@eurecom.fr
25
   date: 21.10.2009
26 27 28 29 30
*/
#ifndef __CODING_DEFS__H__
#define __CODING_DEFS__H__

#include <stdint.h>
laurent's avatar
laurent committed
31
#include <PHY/defs_common.h>
32 33 34 35 36 37 38

#define CRC24_A 0
#define CRC24_B 1
#define CRC16 2
#define CRC8 3

#define MAX_TURBO_ITERATIONS_MBSFN 8
39
#define MAX_TURBO_ITERATIONS max_turbo_iterations
40

41
#define MAX_LDPC_ITERATIONS 5
Hongzhi Wang's avatar
Hongzhi Wang committed
42 43
#define MAX_LDPC_ITERATIONS_MBSFN 4

44
#define LTE_NULL 2
45
#define NR_NULL  2
46 47 48 49 50 51 52 53
typedef struct {
  unsigned short nb_bits;
  unsigned short f1;
  unsigned short f2;
} interleaver_TS_36_212_t;

extern const interleaver_TS_36_212_t f1f2[188];

54
#define LTE_NULL 2
55 56 57 58 59 60 61 62 63
typedef struct interleaver_codebook {
  unsigned long nb_bits;
  unsigned short f1;
  unsigned short f2;
  unsigned int beg_index;
} t_interleaver_codebook;
extern t_interleaver_codebook *f1f2mat;
extern short *il_tb;

64 65 66 67 68 69

/** @addtogroup _PHY_CODING_BLOCKS_
 * @{
*/

/** \fn lte_segmentation(uint8_t *input_buffer,
70 71 72 73 74 75 76 77
              uint8_t **output_buffers,
            uint32_t B,
            uint32_t *C,
            uint32_t *Cplus,
            uint32_t *Cminus,
            uint32_t *Kplus,
            uint32_t *Kminus,
            uint32_t *F)
78 79 80 81 82 83 84 85 86 87 88 89
\brief This function implements the LTE transport block segmentation algorithm from 36-212, V8.6 2009-03.
@param input_buffer
@param output_buffers
@param B
@param C
@param Cplus
@param Cminus
@param Kplus
@param Kminus
@param F
*/
int32_t lte_segmentation(uint8_t *input_buffer,
90 91 92 93 94 95 96 97
                         uint8_t **output_buffers,
                         uint32_t B,
                         uint32_t *C,
                         uint32_t *Cplus,
                         uint32_t *Cminus,
                         uint32_t *Kplus,
                         uint32_t *Kminus,
                         uint32_t *F);
98

99

100

101
/** \fn uint32_t sub_block_interleaving_turbo(uint32_t D, uint8_t *d,uint8_t *w)
102
\brief This is the subblock interleaving algorithm from 36-212 (Release 8, 8.6 2009-03), pages 15-16.
103 104 105 106 107 108 109 110 111
This function takes the d-sequence and generates the w-sequence.  The nu-sequence from 36-212 is implicit.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param d Pointer to input (d-sequence, turbo code output)
\param w Pointer to output (w-sequence, interleaver output)
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$  from 36-212)
*/
uint32_t sub_block_interleaving_turbo(uint32_t D, uint8_t *d,uint8_t *w);

/** \fn uint32_t sub_block_interleaving_cc(uint32_t D, uint8_t *d,uint8_t *w)
112
\brief This is the subblock interleaving algorithm for convolutionally coded blocks from 36-212 (Release 8, 8.6 2009-03), pages 15-16.
113
This function takes the d-sequence and generates the w-sequence.  The nu-sequence from 36-212 is implicit.
114
\param D Number of input bits
115 116 117 118 119 120 121 122
\param d Pointer to input (d-sequence, convolutional code output)
\param w Pointer to output (w-sequence, interleaver output)
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$  from 36-212)
*/
uint32_t sub_block_interleaving_cc(uint32_t D, uint8_t *d,uint8_t *w);


/** \fn void sub_block_deinterleaving_turbo(uint32_t D, int16_t *d,int16_t *w)
123
\brief This is the subblock deinterleaving algorithm from 36-212 (Release 8, 8.6 2009-03), pages 15-16.
124 125 126 127 128 129 130 131
This function takes the w-sequence and generates the d-sequence.  The nu-sequence from 36-212 is implicit.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param d Pointer to output (d-sequence, turbo code output)
\param w Pointer to input (w-sequence, interleaver output)
*/
void sub_block_deinterleaving_turbo(uint32_t D, int16_t *d,int16_t *w);

/** \fn void sub_block_deinterleaving_cc(uint32_t D, int8_t *d,int8_t *w)
132
\brief This is the subblock deinterleaving algorithm for convolutionally-coded data from 36-212 (Release 8, 8.6 2009-03), pages 15-16.
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
This function takes the w-sequence and generates the d-sequence.  The nu-sequence from 36-212 is implicit.
\param D Number of input bits
\param d Pointer to output (d-sequence, turbo code output)
\param w Pointer to input (w-sequence, interleaver output)
*/
void sub_block_deinterleaving_cc(uint32_t D,int8_t *d,int8_t *w);

/** \fn generate_dummy_w(uint32_t D, uint8_t *w,uint8_t F)
\brief This function generates a dummy interleaved sequence (first row) for receiver, in order to identify
the NULL positions used to make the matrix complete.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param w This is the dummy sequence (first row), it will contain zeros and at most 31 "LTE_NULL" values
\param F Number of filler bits due added during segmentation
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$ from 36-212)
*/

uint32_t generate_dummy_w(uint32_t D, uint8_t *w, uint8_t F);

/** \fn generate_dummy_w_cc(uint32_t D, uint8_t *w)
\brief This function generates a dummy interleaved sequence (first row) for receiver (convolutionally-coded data), in order to identify the NULL positions used to make the matrix complete.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param w This is the dummy sequence (first row), it will contain zeros and at most 31 "LTE_NULL" values
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$ from 36-212)
*/
uint32_t generate_dummy_w_cc(uint32_t D, uint8_t *w);

/** \fn uint32_t lte_rate_matching_turbo(uint32_t RTC,
160 161 162 163 164 165 166 167 168 169 170
           uint32_t G,
           uint8_t *w,
           uint8_t *e,
           uint8_t C,
           uint32_t Nsoft,
           uint8_t Mdlharq,
           uint8_t Kmimo,
           uint8_t rvidx,
           uint8_t Qm,
           uint8_t Nl,
           uint8_t r)
171 172 173 174 175 176 177 178

\brief This is the LTE rate matching algorithm for Turbo-coded channels (e.g. DLSCH,ULSCH).  It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RTC R^TC_subblock from subblock interleaver (number of rows in interleaving matrix) for up to 8 segments
\param G This the number of coded transport bits allocated in sub-frame
\param w This is a pointer to the w-sequence (second interleaver output)
\param e This is a pointer to the e-sequence (rate matching output, channel input/output bits)
\param C Number of segments (codewords) in the sub-frame
\param Nsoft Total number of soft bits (from UE capabilities in 36-306)
179
\param Mdlharq Number of HARQ rounds
180 181 182 183 184
\param Kmimo MIMO capability for this DLSCH (0 = no MIMO)
\param rvidx round index (0-3)
\param Qm modulation order (2,4,6)
\param Nl number of layers (1,2)
\param r segment number
185
\param nb_rb Number of PRBs
186 187 188 189
\returns \f$E\f$, the number of coded bits per segment */


uint32_t lte_rate_matching_turbo(uint32_t RTC,
190 191 192 193 194 195 196 197 198 199 200
                                 uint32_t G,
                                 uint8_t *w,
                                 uint8_t *e,
                                 uint8_t C,
                                 uint32_t Nsoft,
                                 uint8_t Mdlharq,
                                 uint8_t Kmimo,
                                 uint8_t rvidx,
                                 uint8_t Qm,
                                 uint8_t Nl,
                                 uint8_t r,
201
                                 uint8_t nb_rb);
202 203

/**
204 205 206 207 208 209 210 211
\brief This is the LTE rate matching algorithm for Convolutionally-coded channels (e.g. BCH,DCI,UCI).  It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RCC R^CC_subblock from subblock interleaver (number of rows in interleaving matrix) for up to 8 segments
\param E Number of coded channel bits
\param w This is a pointer to the w-sequence (second interleaver output)
\param e This is a pointer to the e-sequence (rate matching output, channel input/output bits)
\returns \f$E\f$, the number of coded bits per segment */

uint32_t lte_rate_matching_cc(uint32_t RCC,
212 213 214
                              uint16_t E,
                              uint8_t *w,
                              uint8_t *e);
215

216
/**
217 218 219
\brief This is the LTE rate matching algorithm for Turbo-coded channels (e.g. DLSCH,ULSCH).  It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RTC R^TC_subblock from subblock interleaver (number of rows in interleaving matrix)
\param G This the number of coded transport bits allocated in sub-frame
220
\param w This is a pointer to the soft w-sequence (second interleaver output) with soft-combined outputs from successive HARQ rounds
221
\param dummy_w This is the first row of the interleaver matrix for identifying/discarding the "LTE-NULL" positions
222
\param soft_input This is a pointer to the soft channel output
223 224
\param C Number of segments (codewords) in the sub-frame
\param Nsoft Total number of soft bits (from UE capabilities in 36-306)
225
\param Mdlharq Number of HARQ rounds
226 227 228 229 230 231
\param Kmimo MIMO capability for this DLSCH (0 = no MIMO)
\param rvidx round index (0-3)
\param clear 1 means clear soft buffer (start of HARQ round)
\param Qm modulation order (2,4,6)
\param Nl number of layers (1,2)
\param r segment number
232
\param E_out the number of coded bits per segment
233 234 235 236
\returns 0 on success, -1 on failure
*/

int lte_rate_matching_turbo_rx(uint32_t RTC,
237 238 239 240 241 242 243 244 245 246 247 248 249 250
                               uint32_t G,
                               int16_t *w,
                               uint8_t *dummy_w,
                               int16_t *soft_input,
                               uint8_t C,
                               uint32_t Nsoft,
                               uint8_t Mdlharq,
                               uint8_t Kmimo,
                               uint8_t rvidx,
                               uint8_t clear,
                               uint8_t Qm,
                               uint8_t Nl,
                               uint8_t r,
                               uint32_t *E_out);
251 252

uint32_t lte_rate_matching_turbo_rx_abs(uint32_t RTC,
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
                                        uint32_t G,
                                        double *w,
                                        uint8_t *dummy_w,
                                        double *soft_input,
                                        uint8_t C,
                                        uint32_t Nsoft,
                                        uint8_t Mdlharq,
                                        uint8_t Kmimo,
                                        uint8_t rvidx,
                                        uint8_t clear,
                                        uint8_t Qm,
                                        uint8_t Nl,
                                        uint8_t r,
                                        uint32_t *E_out);
/**
268 269 270 271

\brief This is the LTE rate matching algorithm for Convolutionally-coded channels (e.g. BCH,DCI,UCI).  It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RCC R^CC_subblock from subblock interleaver (number of rows in interleaving matrix)
\param E This the number of coded bits allocated for channel
272
\param w This is a pointer to the soft w-sequence (second interleaver output) with soft-combined outputs from successive HARQ rounds
273
\param dummy_w This is the first row of the interleaver matrix for identifying/discarding the "LTE-NULL" positions
274 275
\param soft_input This is a pointer to the soft channel output
\returns \f$E\f$, the number of coded bits per segment
276 277
*/
void lte_rate_matching_cc_rx(uint32_t RCC,
278 279 280 281
                             uint16_t E,
                             int8_t *w,
                             uint8_t *dummy_w,
                             int8_t *soft_input);
282 283 284 285 286 287 288 289

/** \fn void ccodedot11_encode(uint32_t numbytes,uint8_t *inPtr,uint8_t *outPtr,uint8_t puncturing)
\brief This function implements a rate 1/2 constraint length 7 convolutional code.
@param numbytes Number of bytes to encode
@param inPtr Pointer to input buffer
@param outPtr Pointer to output buffer
@param puncturing Puncturing pattern (Not used at present, to be removed)
*/
290 291 292 293
void ccodedot11_encode (uint32_t numbytes,
                        uint8_t *inPtr,
                        uint8_t *outPtr,
                        uint8_t puncturing);
294 295 296

/*!\fn void ccodedot11_init(void)
\brief This function initializes the generator polynomials for an 802.11 convolutional code.*/
297
void ccodedot11_init(void);
298 299 300

/*!\fn void ccodedot11_init_inv(void)
\brief This function initializes the trellis structure for decoding an 802.11 convolutional code.*/
301
void ccodedot11_init_inv(void);
302

303

304

305

306 307


308
/** \fn void ccodelte_encode(int32_t numbits,uint8_t add_crc, uint8_t *inPtr,uint8_t *outPtr,uint16_t rnti)
309
\brief This function implements the LTE convolutional code of rate 1/3
310
  with a constraint length of 7 bits. The inputs are bit packed in octets
311 312 313 314 315 316 317 318
(from MSB to LSB). Trellis tail-biting is included here.
@param numbits Number of bits to encode
@param add_crc crc to be appended (8 bits) if add_crc = 1
@param inPtr Pointer to input buffer
@param outPtr Pointer to output buffer
@param rnti RNTI for CRC scrambling
*/
void
319
ccodelte_encode (int32_t numbits,
320 321 322 323
                 uint8_t add_crc,
                 uint8_t *inPtr,
                 uint8_t *outPtr,
                 uint16_t rnti);
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

/*!\fn void ccodelte_init(void)
\brief This function initializes the generator polynomials for an LTE convolutional code.*/
void ccodelte_init(void);

/*!\fn void ccodelte_init_inv(void)
\brief This function initializes the trellis structure for decoding an LTE convolutional code.*/
void ccodelte_init_inv(void);

/*!\fn void ccodelte_init(void)
\brief This function initializes the generator polynomials for an DAB convolutional code (first 3 bits).*/
void ccodedab_init(void);

/*!\fn void ccodelte_init_inv(void)
\brief This function initializes the trellis structure for decoding an DAB convolutional code (first 3 bits).*/
void ccodedab_init_inv(void);

341 342


343 344
/*!\fn void crcTableInit(void)
\brief This function initializes the different crc tables.*/
yilmazt's avatar
yilmazt committed
345
void crcTableInit (void);
346

347 348


349
/*!\fn uint32_t crc24a(uint8_t *inPtr, int32_t bitlen)
350
\brief This computes a 24-bit crc ('a' variant for overall transport block)
351 352 353 354
based on 3GPP UMTS/LTE specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits
*/
355
unsigned int crc24a (unsigned char * inptr, int bitlen);
356 357

/*!\fn uint32_t crc24b(uint8_t *inPtr, int32_t bitlen)
358
\brief This computes a 24-bit crc ('b' variant for transport-block segments)
359 360 361 362 363 364
based on 3GPP UMTS/LTE specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits
*/
uint32_t crc24b (uint8_t *inPtr, int32_t bitlen);

yilmazt's avatar
yilmazt committed
365 366 367 368 369 370 371 372
/*!\fn uint32_t crc24c(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 24-bit crc ('c' variant for transport-block segments)
based on 3GPP Rel 15 specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits
*/
uint32_t crc24c (uint8_t *inPtr, int32_t bitlen);

373 374 375 376
/*!\fn uint32_t crc16(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 16-bit crc based on 3GPP UMTS specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
377
unsigned int crc16 (unsigned char * inptr, int bitlen);
378 379 380 381 382

/*!\fn uint32_t crc12(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 12-bit crc based on 3GPP UMTS specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
383
unsigned int crc12 (unsigned char * inptr, int bitlen);
384

385 386 387 388 389 390
/*!\fn uint32_t crc12(uint8_t *inPtr, int32_t bitlen)
\brief This computes an 11-bit crc based on 3GPP NR specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
unsigned int crc11 (unsigned char * inptr, int bitlen);

391 392 393 394
/*!\fn uint32_t crc8(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 8-bit crc based on 3GPP UMTS specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
395
unsigned int crc8 (unsigned char * inptr, int bitlen);
396

397 398 399 400 401 402
/*!\fn uint32_t crc8(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 6-bit crc based on 3GPP NR specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
unsigned int crc6 (unsigned char * inptr, int bitlen);

403
int check_crc(uint8_t* decoded_bytes, uint32_t n, uint32_t F, uint8_t crc_type);
404
    
405 406 407 408 409 410 411 412 413 414
/*!\fn void phy_viterbi_dot11_sse2(int8_t *y, uint8_t *decoded_bytes, uint16_t n,int offset,int traceback)
\brief This routine performs a SIMD optmized Viterbi decoder for the 802.11 64-state convolutional code. It can be
run in segments with final trace back after last segment.
@param y Pointer to soft input (coded on 8-bits but should be limited to 4-bit precision to avoid overflow)
@param decoded_bytes Pointer to decoded output
@param n Length of input/trellis depth in bits for this run
@param offset offset in receive buffer for segment on which to operate
@param traceback flag to indicate that traceback should be performed*/
void phy_viterbi_dot11_sse2(int8_t *y,uint8_t *decoded_bytes,uint16_t n);

415
/*!\fn void phy_viterbi_lte_sse2(int8_t *y, uint8_t *decoded_bytes, uint16_t n)
416 417 418 419
\brief This routine performs a SIMD optmized Viterbi decoder for the LTE 64-state tail-biting convolutional code.
@param y Pointer to soft input (coded on 8-bits but should be limited to 4-bit precision to avoid overflow)
@param decoded_bytes Pointer to decoded output
@param n Length of input/trellis depth in bits*/
420
//void phy_viterbi_lte_sse2(int8_t *y,uint8_t *decoded_bytes,uint16_t n);
421
void phy_viterbi_lte_sse2(int8_t *y,uint8_t *decoded_bytes,uint16_t n);
422 423 424 425 426 427 428 429 430 431 432 433

/*!\fn void phy_generate_viterbi_tables(void)
\brief This routine initializes metric tables for the optimized Viterbi decoder.
*/
void phy_generate_viterbi_tables( void );

/*!\fn void phy_generate_viterbi_tables_lte(void)
\brief This routine initializes metric tables for the optimized LTE Viterbi decoder.
*/
void phy_generate_viterbi_tables_lte( void );


434 435 436 437 438
/*!\fn int32_t rate_matching(uint32_t N_coded,
             uint32_t N_input,
             uint8_t *inPtr,
             uint8_t N_bps,
             uint32_t off)
439 440 441 442 443 444 445 446
\brief This routine performs random puncturing of a coded sequence.
@param N_coded Number of coding bits to be output
@param N_input Number of input bits
@param *inPtr Pointer to coded input
@param N_bps Number of modulation bits per symbol (1,2,4)
@param off Offset for seed

*/
447 448 449 450 451
int32_t rate_matching(uint32_t N_coded,
                      uint32_t N_input,
                      uint8_t *inPtr,
                      uint8_t N_bps,
                      uint32_t off);
452

453 454 455 456
int32_t rate_matching_lte(uint32_t N_coded,
                          uint32_t N_input,
                          uint8_t *inPtr,
                          uint32_t off);
457

458
unsigned int crcbit (unsigned char * inputptr, int octetlen, unsigned int poly);
459 460 461 462

int16_t reverseBits(int32_t ,int32_t);
void phy_viterbi_dot11(int8_t *,uint8_t *,uint16_t);

463 464 465 466
int32_t nr_segmentation(unsigned char *input_buffer,
                     unsigned char **output_buffers,
                     unsigned int B,
                     unsigned int *C,
Hongzhi Wang's avatar
Hongzhi Wang committed
467
                     unsigned int *K,
Ahmed's avatar
Ahmed committed
468
                     unsigned int *Zout,
469 470
                     unsigned int *F,
                     uint8_t BG);
471

472
uint32_t nr_compute_tbs(uint16_t Qm,
473
                        uint16_t R,
474 475
			uint16_t nb_rb,
			uint16_t nb_symb_sch,
476 477
			uint16_t nb_dmrs_prb,
                        uint16_t nb_rb_oh,
478
                        uint8_t tb_scaling,
479
			uint8_t Nl);
480 481 482 483 484

uint32_t nr_compute_tbslbrm(uint16_t table,
			    uint16_t nb_rb,
		            uint8_t Nl,
                            uint8_t C);
485

486 487
void nr_interleaving_ldpc(uint32_t E, uint8_t Qm, uint8_t *e,uint8_t *f);

Hongzhi Wang's avatar
Hongzhi Wang committed
488
void nr_deinterleaving_ldpc(uint32_t E, uint8_t Qm, int16_t *e,int16_t *f);
489

490 491 492 493 494 495 496
int nr_rate_matching_ldpc(uint8_t Ilbrm,
                          uint32_t Tbslbrm,
                          uint8_t BG,
                          uint16_t Z,
                          uint8_t *w,
                          uint8_t *e,
                          uint8_t C,
497 498
			  uint32_t F,
			  uint32_t Foffset,
499 500
                          uint8_t rvidx,
                          uint32_t E);
501 502

int nr_rate_matching_ldpc_rx(uint8_t Ilbrm,
503 504 505
                             uint32_t Tbslbrm,
                             uint8_t BG,
                             uint16_t Z,
506 507 508 509 510
                             int16_t *w,
                             int16_t *soft_input,
                             uint8_t C,
                             uint8_t rvidx,
                             uint8_t clear,
511 512 513
                             uint32_t E,
			     uint32_t F,
			     uint32_t Foffset);
514

515 516 517
decoder_if_t phy_threegpplte_turbo_decoder;
decoder_if_t phy_threegpplte_turbo_decoder8;
decoder_if_t phy_threegpplte_turbo_decoder16;
518

519
#endif