Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
O
OpenXG-RAN
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
zzha zzha
OpenXG-RAN
Commits
63d57a0c
Commit
63d57a0c
authored
Jul 16, 2014
by
Lionel Gauthier
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
git-svn-id:
http://svn.eurecom.fr/openair4G/trunk@5517
818b1a75-f10b-46b9-bf7c-635c3b92a50f
parent
78ca4cf0
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
250 additions
and
11 deletions
+250
-11
openair2/UTIL/OSA/osa_defs.h
openair2/UTIL/OSA/osa_defs.h
+3
-3
openair2/UTIL/OSA/osa_key_deriver.c
openair2/UTIL/OSA/osa_key_deriver.c
+5
-4
openair2/UTIL/OSA/osa_stream_eea.c
openair2/UTIL/OSA/osa_stream_eea.c
+71
-2
openair2/UTIL/OSA/osa_stream_eia.c
openair2/UTIL/OSA/osa_stream_eia.c
+171
-2
No files found.
openair2/UTIL/OSA/osa_defs.h
View file @
63d57a0c
...
...
@@ -60,15 +60,15 @@ typedef enum {
UP_ENC_ALG
=
0x05
}
algorithm_type_dist_t
;
int
derive_keNB
(
const
uint8_t
kasme
[
32
],
const
uint32_t
nas_count
,
uint8_t
**
keNB
);
//
int derive_keNB(const uint8_t kasme[32], const uint32_t nas_count, uint8_t **keNB);
int
derive_key
(
algorithm_type_dist_t
nas_alg_type
,
uint8_t
nas_enc_alg_id
,
const
uint8_t
key
[
32
],
uint8_t
**
out
);
#define derive_key_nas_enc(aLGiD, kEY, kNAS) \
//
#define derive_key_nas_enc(aLGiD, kEY, kNAS) \
derive_key
(
NAS_ENC_ALG
,
aLGiD
,
kEY
,
kNAS
)
#define derive_key_nas_int(aLGiD, kEY, kNAS) \
//
#define derive_key_nas_int(aLGiD, kEY, kNAS) \
derive_key
(
NAS_INT_ALG
,
aLGiD
,
kEY
,
kNAS
)
#define derive_key_rrc_enc(aLGiD, kEY, kNAS) \
...
...
openair2/UTIL/OSA/osa_key_deriver.c
View file @
63d57a0c
...
...
@@ -75,20 +75,20 @@ int derive_key(algorithm_type_dist_t alg_type, uint8_t alg_id,
return
0
;
}
/*
int derive_keNB(const uint8_t key[32], const uint32_t nas_count, uint8_t **keNB)
{
uint8_t string[7];
/
* FC */
/
/ FC
string[0] = FC_KENB;
/
* P0 = Uplink NAS count */
/
/ P0 = Uplink NAS count
string[1] = (nas_count & 0xff000000) >> 24;
string[2] = (nas_count & 0x00ff0000) >> 16;
string[3] = (nas_count & 0x0000ff00) >> 8;
string[4] = (nas_count & 0x000000ff);
/
* Length of NAS count */
/
/ Length of NAS count
string[5] = 0x00;
string[6] = 0x04;
...
...
@@ -108,3 +108,4 @@ int derive_keNB(const uint8_t key[32], const uint32_t nas_count, uint8_t **keNB)
return 0;
}
*/
openair2/UTIL/OSA/osa_stream_eea.c
View file @
63d57a0c
...
...
@@ -11,6 +11,7 @@
#include "assertions.h"
#include "osa_defs.h"
#include "osa_snow3g.h"
#include "osa_internal.h"
int
stream_encrypt_eea0
(
stream_cipher_t
*
stream_cipher
,
uint8_t
**
out
)
...
...
@@ -42,6 +43,75 @@ int stream_encrypt_eea0(stream_cipher_t *stream_cipher, uint8_t **out)
return
0
;
}
int
stream_encrypt_eea1
(
stream_cipher_t
*
stream_cipher
,
uint8_t
**
out
)
{
osa_snow_3g_context_t
snow_3g_context
;
int
n
;
int
i
=
0
;
uint32_t
zero_bit
=
0
;
uint32_t
byte_length
;
uint32_t
*
KS
;
uint32_t
K
[
4
],
IV
[
4
];
DevAssert
(
stream_cipher
!=
NULL
);
DevAssert
(
stream_cipher
->
key
!=
NULL
);
DevAssert
(
stream_cipher
->
key_length
==
16
);
DevAssert
(
out
!=
NULL
);
n
=
(
stream_cipher
->
blength
+
31
)
/
32
;
zero_bit
=
stream_cipher
->
blength
&
0x7
;
byte_length
=
stream_cipher
->
blength
>>
3
;
memset
(
&
snow_3g_context
,
0
,
sizeof
(
snow_3g_context
));
/*Initialisation*/
/* Load the confidentiality key for SNOW 3G initialization as in section
3.4. */
memcpy
(
K
+
3
,
stream_cipher
->
key
+
0
,
4
);
/*K[3] = key[0]; we assume
K[3]=key[0]||key[1]||...||key[31] , with key[0] the
* most important bit of key*/
memcpy
(
K
+
2
,
stream_cipher
->
key
+
4
,
4
);
/*K[2] = key[1];*/
memcpy
(
K
+
1
,
stream_cipher
->
key
+
8
,
4
);
/*K[1] = key[2];*/
memcpy
(
K
+
0
,
stream_cipher
->
key
+
12
,
4
);
/*K[0] = key[3]; we assume
K[0]=key[96]||key[97]||...||key[127] , with key[127] the
* least important bit of key*/
K
[
3
]
=
hton_int32
(
K
[
3
]);
K
[
2
]
=
hton_int32
(
K
[
2
]);
K
[
1
]
=
hton_int32
(
K
[
1
]);
K
[
0
]
=
hton_int32
(
K
[
0
]);
/* Prepare the initialization vector (IV) for SNOW 3G initialization as in
section 3.4. */
IV
[
3
]
=
stream_cipher
->
count
;
IV
[
2
]
=
((((
uint32_t
)
stream_cipher
->
bearer
)
<<
3
)
|
((((
uint32_t
)
stream_cipher
->
direction
)
&
0x1
)
<<
2
))
<<
24
;
IV
[
1
]
=
IV
[
3
];
IV
[
0
]
=
IV
[
2
];
/* Run SNOW 3G algorithm to generate sequence of key stream bits KS*/
osa_snow3g_initialize
(
K
,
IV
,
&
snow_3g_context
);
KS
=
(
uint32_t
*
)
malloc
(
4
*
n
);
osa_snow3g_generate_key_stream
(
n
,(
uint32_t
*
)
KS
,
&
snow_3g_context
);
if
(
zero_bit
>
0
)
{
KS
[
n
-
1
]
=
KS
[
n
-
1
]
&
(
uint32_t
)(
0xFFFFFFFF
<<
(
8
-
zero_bit
));
}
for
(
i
=
0
;
i
<
n
;
i
++
)
{
KS
[
i
]
=
hton_int32
(
KS
[
i
]);
}
/* Exclusive-OR the input data with keystream to generate the output bit
stream */
for
(
i
=
0
;
i
<
n
*
4
;
i
++
)
{
stream_cipher
->
message
[
i
]
^=
*
(((
uint8_t
*
)
KS
)
+
i
);
}
if
(
zero_bit
>
0
)
{
int
ceil_index
=
(
stream_cipher
->
blength
+
7
)
>>
3
;
stream_cipher
->
message
[
ceil_index
-
1
]
=
stream_cipher
->
message
[
ceil_index
-
1
]
&
(
uint8_t
)(
0xFF
<<
(
8
-
zero_bit
));
}
free
(
KS
);
*
out
=
stream_cipher
->
message
;
return
0
;
}
int
stream_encrypt_eea2
(
stream_cipher_t
*
stream_cipher
,
uint8_t
**
out
)
{
uint8_t
m
[
16
];
...
...
@@ -129,8 +199,7 @@ int stream_encrypt(uint8_t algorithm, stream_cipher_t *stream_cipher, uint8_t **
if
(
algorithm
==
EEA0_ALG_ID
)
{
return
stream_encrypt_eea0
(
stream_cipher
,
out
);
}
else
if
(
algorithm
==
EEA1_128_ALG_ID
)
{
LOG_E
(
OSA
,
"SNOW-3G algorithms are currently not implemented for encryption
\n
"
);
return
-
1
;
return
stream_encrypt_eea1
(
stream_cipher
,
out
);
}
else
if
(
algorithm
==
EEA2_128_ALG_ID
)
{
return
stream_encrypt_eea2
(
stream_cipher
,
out
);
}
...
...
openair2/UTIL/OSA/osa_stream_eia.c
View file @
63d57a0c
...
...
@@ -2,6 +2,7 @@
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include "assertions.h"
...
...
@@ -12,13 +13,181 @@
#include "UTIL/LOG/log.h"
#include "osa_defs.h"
#include "osa_snow3g.h"
#include "osa_internal.h"
// see spec 3GPP Confidentiality and Integrity Algorithms UEA2&UIA2. Document 1: UEA2 and UIA2 Specification. Version 1.1
/* OSA_MUL64x.
* Input V: a 64-bit input.
* Input c: a 64-bit input.
* Output : a 64-bit output.
* A 64-bit memory is allocated which is to be freed by the calling
* function.
* See section 4.3.2 for details.
*/
uint64_t
OSA_MUL64x
(
uint64_t
V
,
uint64_t
c
)
{
if
(
V
&
0x8000000000000000
)
return
(
V
<<
1
)
^
c
;
else
return
V
<<
1
;
}
/* OSA_MUL64xPOW.
* Input V: a 64-bit input.
* Input i: a positive integer.
* Input c: a 64-bit input.
* Output : a 64-bit output.
* A 64-bit memory is allocated which is to be freed by the calling
function.
* See section 4.3.3 for details.
*/
uint64_t
OSA_MUL64xPOW
(
uint64_t
V
,
uint32_t
i
,
uint64_t
c
)
{
if
(
i
==
0
)
return
V
;
else
return
OSA_MUL64x
(
OSA_MUL64xPOW
(
V
,
i
-
1
,
c
)
,
c
);
}
/* OSA_MUL64.
* Input V: a 64-bit input.
* Input P: a 64-bit input.
* Input c: a 64-bit input.
* Output : a 64-bit output.
* A 64-bit memory is allocated which is to be freed by the calling
* function.
* See section 4.3.4 for details.
*/
uint64_t
OSA_MUL64
(
uint64_t
V
,
uint64_t
P
,
uint64_t
c
)
{
uint64_t
result
=
0
;
int
i
=
0
;
for
(
i
=
0
;
i
<
64
;
i
++
)
{
if
(
(
P
>>
i
)
&
0x1
)
result
^=
OSA_MUL64xPOW
(
V
,
i
,
c
);
}
return
result
;
}
/* osa_mask32bit.
* Input n: an integer in 1-32.
* Output : a 32 bit mask.
* Prepares a 32 bit mask with required number of 1 bits on the MSB side.
*/
uint32_t
osa_mask32bit
(
int
n
)
{
uint32_t
mask
=
0x0
;
if
(
n
%
32
==
0
)
return
0xffffffff
;
while
(
n
--
)
mask
=
(
mask
>>
1
)
^
0x80000000
;
return
mask
;
}
/*!
* @brief Create integrity cmac t for a given message.
* @param[in] stream_cipher Structure containing various variables to setup encoding
* @param[out] out For EIA2 the output string is 32 bits long
*/
int
stream_compute_integrity_eia1
(
stream_cipher_t
*
stream_cipher
,
uint8_t
out
[
4
])
{
osa_snow_3g_context_t
snow_3g_context
;
uint32_t
K
[
4
],
IV
[
4
],
z
[
5
];
int
i
=
0
,
D
;
uint32_t
MAC_I
=
0
;
uint64_t
EVAL
;
uint64_t
V
;
uint64_t
P
;
uint64_t
Q
;
uint64_t
c
;
uint64_t
M_D_2
;
int
rem_bits
;
uint32_t
mask
=
0
;
uint32_t
*
message
;
message
=
(
uint32_t
*
)
stream_cipher
->
message
;
/* To operate 32 bit message internally. */
/* Load the Integrity Key for SNOW3G initialization as in section 4.4. */
memcpy
(
K
+
3
,
stream_cipher
->
key
+
0
,
4
);
/*K[3] = key[0]; we assume
K[3]=key[0]||key[1]||...||key[31] , with key[0] the
* most important bit of key*/
memcpy
(
K
+
2
,
stream_cipher
->
key
+
4
,
4
);
/*K[2] = key[1];*/
memcpy
(
K
+
1
,
stream_cipher
->
key
+
8
,
4
);
/*K[1] = key[2];*/
memcpy
(
K
+
0
,
stream_cipher
->
key
+
12
,
4
);
/*K[0] = key[3]; we assume
K[0]=key[96]||key[97]||...||key[127] , with key[127] the
* least important bit of key*/
K
[
3
]
=
hton_int32
(
K
[
3
]);
K
[
2
]
=
hton_int32
(
K
[
2
]);
K
[
1
]
=
hton_int32
(
K
[
1
]);
K
[
0
]
=
hton_int32
(
K
[
0
]);
/* Prepare the Initialization Vector (IV) for SNOW3G initialization as in
section 4.4. */
IV
[
3
]
=
(
uint32_t
)
stream_cipher
->
count
;
IV
[
2
]
=
((((
uint32_t
)
stream_cipher
->
bearer
)
&
0x0000001F
)
<<
27
);
IV
[
1
]
=
(
uint32_t
)(
stream_cipher
->
count
)
^
(
(
uint32_t
)(
stream_cipher
->
direction
)
<<
31
)
;
IV
[
0
]
=
((((
uint32_t
)
stream_cipher
->
bearer
)
&
0x0000001F
)
<<
27
)
^
((
uint32_t
)(
stream_cipher
->
direction
&
0x00000001
)
<<
15
);
//printf ("K:\n");
//hexprint(K, 16);
//printf ("K[0]:%08X\n",K[0]);
//printf ("K[1]:%08X\n",K[1]);
//printf ("K[2]:%08X\n",K[2]);
//printf ("K[3]:%08X\n",K[3]);
//printf ("IV:\n");
//hexprint(IV, 16);
//printf ("IV[0]:%08X\n",IV[0]);
//printf ("IV[1]:%08X\n",IV[1]);
//printf ("IV[2]:%08X\n",IV[2]);
//printf ("IV[3]:%08X\n",IV[3]);
z
[
0
]
=
z
[
1
]
=
z
[
2
]
=
z
[
3
]
=
z
[
4
]
=
0
;
/* Run SNOW 3G to produce 5 keystream words z_1, z_2, z_3, z_4 and z_5. */
osa_snow3g_initialize
(
K
,
IV
,
&
snow_3g_context
);
osa_snow3g_generate_key_stream
(
5
,
z
,
&
snow_3g_context
);
//printf ("z[0]:%08X\n",z[0]);
//printf ("z[1]:%08X\n",z[1]);
//printf ("z[2]:%08X\n",z[2]);
//printf ("z[3]:%08X\n",z[3]);
//printf ("z[4]:%08X\n",z[4]);
P
=
((
uint64_t
)
z
[
0
]
<<
32
)
|
(
uint64_t
)
z
[
1
];
Q
=
((
uint64_t
)
z
[
2
]
<<
32
)
|
(
uint64_t
)
z
[
3
];
//printf ("P:%16lX\n",P);
//printf ("Q:%16lX\n",Q);
/* Calculation */
D
=
ceil
(
stream_cipher
->
blength
/
64
.
0
)
+
1
;
//printf ("D:%d\n",D);
EVAL
=
0
;
c
=
0x1b
;
/* for 0 <= i <= D-3 */
for
(
i
=
0
;
i
<
D
-
2
;
i
++
)
{
V
=
EVAL
^
(
(
uint64_t
)
hton_int32
(
message
[
2
*
i
])
<<
32
|
(
uint64_t
)
hton_int32
(
message
[
2
*
i
+
1
])
);
EVAL
=
OSA_MUL64
(
V
,
P
,
c
);
//printf ("Mi: %16X %16X\tEVAL: %16lX\n",hton_int32(message[2*i]),hton_int32(message[2*i+1]), EVAL);
}
/* for D-2 */
rem_bits
=
stream_cipher
->
blength
%
64
;
if
(
rem_bits
==
0
)
rem_bits
=
64
;
mask
=
osa_mask32bit
(
rem_bits
%
32
);
if
(
rem_bits
>
32
)
{
M_D_2
=
(
(
uint64_t
)
hton_int32
(
message
[
2
*
(
D
-
2
)])
<<
32
)
|
(
uint64_t
)
(
hton_int32
(
message
[
2
*
(
D
-
2
)
+
1
])
&
mask
);
}
else
{
M_D_2
=
(
(
uint64_t
)
hton_int32
(
message
[
2
*
(
D
-
2
)])
&
mask
)
<<
32
;
}
V
=
EVAL
^
M_D_2
;
EVAL
=
OSA_MUL64
(
V
,
P
,
c
);
/* for D-1 */
EVAL
^=
stream_cipher
->
blength
;
/* Multiply by Q */
EVAL
=
OSA_MUL64
(
EVAL
,
Q
,
c
);
MAC_I
=
(
uint32_t
)(
EVAL
>>
32
)
^
z
[
4
];
//printf ("MAC_I:%16X\n",MAC_I);
MAC_I
=
hton_int32
(
MAC_I
);
memcpy
(
out
,
&
MAC_I
,
4
);
return
0
;
}
int
stream_compute_integrity_eia2
(
stream_cipher_t
*
stream_cipher
,
uint8_t
out
[
4
])
{
uint8_t
*
m
;
...
...
@@ -83,8 +252,8 @@ int stream_compute_integrity_eia2(stream_cipher_t *stream_cipher, uint8_t out[4]
int
stream_compute_integrity
(
uint8_t
algorithm
,
stream_cipher_t
*
stream_cipher
,
uint8_t
out
[
4
])
{
if
(
algorithm
==
EIA1_128_ALG_ID
)
{
LOG_
E
(
OSA
,
"SNOW-3G algorithms are currently not implement
ed for integrity
\n
"
);
return
-
1
;
LOG_
D
(
OSA
,
"EIA1 algorithm appli
ed for integrity
\n
"
);
return
stream_compute_integrity_eia1
(
stream_cipher
,
out
)
;
}
else
if
(
algorithm
==
EIA2_128_ALG_ID
)
{
LOG_D
(
OSA
,
"EIA2 algorithm applied for integrity
\n
"
);
return
stream_compute_integrity_eia2
(
stream_cipher
,
out
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment