Commit 63d57a0c authored by Lionel Gauthier's avatar Lionel Gauthier

git-svn-id: http://svn.eurecom.fr/openair4G/trunk@5517 818b1a75-f10b-46b9-bf7c-635c3b92a50f
parent 78ca4cf0
...@@ -60,15 +60,15 @@ typedef enum { ...@@ -60,15 +60,15 @@ typedef enum {
UP_ENC_ALG = 0x05 UP_ENC_ALG = 0x05
} algorithm_type_dist_t; } algorithm_type_dist_t;
int derive_keNB(const uint8_t kasme[32], const uint32_t nas_count, uint8_t **keNB); //int derive_keNB(const uint8_t kasme[32], const uint32_t nas_count, uint8_t **keNB);
int derive_key(algorithm_type_dist_t nas_alg_type, uint8_t nas_enc_alg_id, int derive_key(algorithm_type_dist_t nas_alg_type, uint8_t nas_enc_alg_id,
const uint8_t key[32], uint8_t **out); const uint8_t key[32], uint8_t **out);
#define derive_key_nas_enc(aLGiD, kEY, kNAS) \ //#define derive_key_nas_enc(aLGiD, kEY, kNAS) \
derive_key(NAS_ENC_ALG, aLGiD, kEY, kNAS) derive_key(NAS_ENC_ALG, aLGiD, kEY, kNAS)
#define derive_key_nas_int(aLGiD, kEY, kNAS) \ //#define derive_key_nas_int(aLGiD, kEY, kNAS) \
derive_key(NAS_INT_ALG, aLGiD, kEY, kNAS) derive_key(NAS_INT_ALG, aLGiD, kEY, kNAS)
#define derive_key_rrc_enc(aLGiD, kEY, kNAS) \ #define derive_key_rrc_enc(aLGiD, kEY, kNAS) \
......
...@@ -75,20 +75,20 @@ int derive_key(algorithm_type_dist_t alg_type, uint8_t alg_id, ...@@ -75,20 +75,20 @@ int derive_key(algorithm_type_dist_t alg_type, uint8_t alg_id,
return 0; return 0;
} }
/*
int derive_keNB(const uint8_t key[32], const uint32_t nas_count, uint8_t **keNB) int derive_keNB(const uint8_t key[32], const uint32_t nas_count, uint8_t **keNB)
{ {
uint8_t string[7]; uint8_t string[7];
/* FC */ // FC
string[0] = FC_KENB; string[0] = FC_KENB;
/* P0 = Uplink NAS count */ // P0 = Uplink NAS count
string[1] = (nas_count & 0xff000000) >> 24; string[1] = (nas_count & 0xff000000) >> 24;
string[2] = (nas_count & 0x00ff0000) >> 16; string[2] = (nas_count & 0x00ff0000) >> 16;
string[3] = (nas_count & 0x0000ff00) >> 8; string[3] = (nas_count & 0x0000ff00) >> 8;
string[4] = (nas_count & 0x000000ff); string[4] = (nas_count & 0x000000ff);
/* Length of NAS count */ // Length of NAS count
string[5] = 0x00; string[5] = 0x00;
string[6] = 0x04; string[6] = 0x04;
...@@ -108,3 +108,4 @@ int derive_keNB(const uint8_t key[32], const uint32_t nas_count, uint8_t **keNB) ...@@ -108,3 +108,4 @@ int derive_keNB(const uint8_t key[32], const uint32_t nas_count, uint8_t **keNB)
return 0; return 0;
} }
*/
...@@ -11,6 +11,7 @@ ...@@ -11,6 +11,7 @@
#include "assertions.h" #include "assertions.h"
#include "osa_defs.h" #include "osa_defs.h"
#include "osa_snow3g.h"
#include "osa_internal.h" #include "osa_internal.h"
int stream_encrypt_eea0(stream_cipher_t *stream_cipher, uint8_t **out) int stream_encrypt_eea0(stream_cipher_t *stream_cipher, uint8_t **out)
...@@ -42,6 +43,75 @@ int stream_encrypt_eea0(stream_cipher_t *stream_cipher, uint8_t **out) ...@@ -42,6 +43,75 @@ int stream_encrypt_eea0(stream_cipher_t *stream_cipher, uint8_t **out)
return 0; return 0;
} }
int stream_encrypt_eea1(stream_cipher_t *stream_cipher, uint8_t **out)
{
osa_snow_3g_context_t snow_3g_context;
int n ;
int i = 0;
uint32_t zero_bit = 0;
uint32_t byte_length;
uint32_t *KS;
uint32_t K[4],IV[4];
DevAssert(stream_cipher != NULL);
DevAssert(stream_cipher->key != NULL);
DevAssert(stream_cipher->key_length == 16);
DevAssert(out != NULL);
n = ( stream_cipher->blength + 31 ) / 32;
zero_bit = stream_cipher->blength & 0x7;
byte_length = stream_cipher->blength >> 3;
memset(&snow_3g_context, 0, sizeof(snow_3g_context));
/*Initialisation*/
/* Load the confidentiality key for SNOW 3G initialization as in section
3.4. */
memcpy(K+3,stream_cipher->key+0,4); /*K[3] = key[0]; we assume
K[3]=key[0]||key[1]||...||key[31] , with key[0] the
* most important bit of key*/
memcpy(K+2,stream_cipher->key+4,4); /*K[2] = key[1];*/
memcpy(K+1,stream_cipher->key+8,4); /*K[1] = key[2];*/
memcpy(K+0,stream_cipher->key+12,4); /*K[0] = key[3]; we assume
K[0]=key[96]||key[97]||...||key[127] , with key[127] the
* least important bit of key*/
K[3] = hton_int32(K[3]);
K[2] = hton_int32(K[2]);
K[1] = hton_int32(K[1]);
K[0] = hton_int32(K[0]);
/* Prepare the initialization vector (IV) for SNOW 3G initialization as in
section 3.4. */
IV[3] = stream_cipher->count;
IV[2] = ((((uint32_t)stream_cipher->bearer) << 3) | ((((uint32_t)stream_cipher->direction) & 0x1) << 2)) << 24;
IV[1] = IV[3];
IV[0] = IV[2];
/* Run SNOW 3G algorithm to generate sequence of key stream bits KS*/
osa_snow3g_initialize(K, IV, &snow_3g_context);
KS = (uint32_t *)malloc(4*n);
osa_snow3g_generate_key_stream(n,(uint32_t*)KS, &snow_3g_context);
if (zero_bit > 0) {
KS[n - 1] = KS[n - 1] & (uint32_t)(0xFFFFFFFF << (8 - zero_bit));
}
for (i=0;i<n;i++) {
KS[i] = hton_int32(KS[i]);
}
/* Exclusive-OR the input data with keystream to generate the output bit
stream */
for (i=0;i<n*4;i++) {
stream_cipher->message[i] ^= *(((uint8_t*)KS)+i);
}
if (zero_bit > 0) {
int ceil_index = (stream_cipher->blength+7) >> 3;
stream_cipher->message[ceil_index - 1] = stream_cipher->message[ceil_index - 1] & (uint8_t)(0xFF << (8 - zero_bit));
}
free(KS);
*out = stream_cipher->message;
return 0;
}
int stream_encrypt_eea2(stream_cipher_t *stream_cipher, uint8_t **out) int stream_encrypt_eea2(stream_cipher_t *stream_cipher, uint8_t **out)
{ {
uint8_t m[16]; uint8_t m[16];
...@@ -129,8 +199,7 @@ int stream_encrypt(uint8_t algorithm, stream_cipher_t *stream_cipher, uint8_t ** ...@@ -129,8 +199,7 @@ int stream_encrypt(uint8_t algorithm, stream_cipher_t *stream_cipher, uint8_t **
if (algorithm == EEA0_ALG_ID) { if (algorithm == EEA0_ALG_ID) {
return stream_encrypt_eea0(stream_cipher, out); return stream_encrypt_eea0(stream_cipher, out);
} else if (algorithm == EEA1_128_ALG_ID) { } else if (algorithm == EEA1_128_ALG_ID) {
LOG_E(OSA, "SNOW-3G algorithms are currently not implemented for encryption\n"); return stream_encrypt_eea1(stream_cipher, out);
return -1;
} else if (algorithm == EEA2_128_ALG_ID) { } else if (algorithm == EEA2_128_ALG_ID) {
return stream_encrypt_eea2(stream_cipher, out); return stream_encrypt_eea2(stream_cipher, out);
} }
......
...@@ -2,6 +2,7 @@ ...@@ -2,6 +2,7 @@
#include <stdio.h> #include <stdio.h>
#include <stdint.h> #include <stdint.h>
#include <string.h> #include <string.h>
#include <math.h>
#include "assertions.h" #include "assertions.h"
...@@ -12,13 +13,181 @@ ...@@ -12,13 +13,181 @@
#include "UTIL/LOG/log.h" #include "UTIL/LOG/log.h"
#include "osa_defs.h" #include "osa_defs.h"
#include "osa_snow3g.h"
#include "osa_internal.h" #include "osa_internal.h"
// see spec 3GPP Confidentiality and Integrity Algorithms UEA2&UIA2. Document 1: UEA2 and UIA2 Specification. Version 1.1
/* OSA_MUL64x.
* Input V: a 64-bit input.
* Input c: a 64-bit input.
* Output : a 64-bit output.
* A 64-bit memory is allocated which is to be freed by the calling
* function.
* See section 4.3.2 for details.
*/
uint64_t OSA_MUL64x(uint64_t V, uint64_t c)
{
if ( V & 0x8000000000000000 )
return (V << 1) ^ c;
else
return V << 1;
}
/* OSA_MUL64xPOW.
* Input V: a 64-bit input.
* Input i: a positive integer.
* Input c: a 64-bit input.
* Output : a 64-bit output.
* A 64-bit memory is allocated which is to be freed by the calling
function.
* See section 4.3.3 for details.
*/
uint64_t OSA_MUL64xPOW(uint64_t V, uint32_t i, uint64_t c)
{
if ( i == 0)
return V;
else
return OSA_MUL64x( OSA_MUL64xPOW(V,i-1,c) , c);
}
/* OSA_MUL64.
* Input V: a 64-bit input.
* Input P: a 64-bit input.
* Input c: a 64-bit input.
* Output : a 64-bit output.
* A 64-bit memory is allocated which is to be freed by the calling
* function.
* See section 4.3.4 for details.
*/
uint64_t OSA_MUL64(uint64_t V, uint64_t P, uint64_t c)
{
uint64_t result = 0;
int i = 0;
for ( i=0; i<64; i++)
{
if( ( P>>i ) & 0x1 )
result ^= OSA_MUL64xPOW(V,i,c);
}
return result;
}
/* osa_mask32bit.
* Input n: an integer in 1-32.
* Output : a 32 bit mask.
* Prepares a 32 bit mask with required number of 1 bits on the MSB side.
*/
uint32_t osa_mask32bit(int n)
{
uint32_t mask=0x0;
if ( n%32 == 0 )
return 0xffffffff;
while (n--)
mask = (mask>>1) ^ 0x80000000;
return mask;
}
/*! /*!
* @brief Create integrity cmac t for a given message. * @brief Create integrity cmac t for a given message.
* @param[in] stream_cipher Structure containing various variables to setup encoding * @param[in] stream_cipher Structure containing various variables to setup encoding
* @param[out] out For EIA2 the output string is 32 bits long * @param[out] out For EIA2 the output string is 32 bits long
*/ */
int stream_compute_integrity_eia1(stream_cipher_t *stream_cipher, uint8_t out[4])
{
osa_snow_3g_context_t snow_3g_context;
uint32_t K[4],IV[4], z[5];
int i=0,D;
uint32_t MAC_I = 0;
uint64_t EVAL;
uint64_t V;
uint64_t P;
uint64_t Q;
uint64_t c;
uint64_t M_D_2;
int rem_bits;
uint32_t mask = 0;
uint32_t *message;
message = (uint32_t*)stream_cipher->message; /* To operate 32 bit message internally. */
/* Load the Integrity Key for SNOW3G initialization as in section 4.4. */
memcpy(K+3,stream_cipher->key+0,4); /*K[3] = key[0]; we assume
K[3]=key[0]||key[1]||...||key[31] , with key[0] the
* most important bit of key*/
memcpy(K+2,stream_cipher->key+4,4); /*K[2] = key[1];*/
memcpy(K+1,stream_cipher->key+8,4); /*K[1] = key[2];*/
memcpy(K+0,stream_cipher->key+12,4); /*K[0] = key[3]; we assume
K[0]=key[96]||key[97]||...||key[127] , with key[127] the
* least important bit of key*/
K[3] = hton_int32(K[3]);
K[2] = hton_int32(K[2]);
K[1] = hton_int32(K[1]);
K[0] = hton_int32(K[0]);
/* Prepare the Initialization Vector (IV) for SNOW3G initialization as in
section 4.4. */
IV[3] = (uint32_t)stream_cipher->count;
IV[2] = ((((uint32_t)stream_cipher->bearer) & 0x0000001F) << 27);
IV[1] = (uint32_t)(stream_cipher->count) ^ ( (uint32_t)(stream_cipher->direction) << 31 ) ;
IV[0] = ((((uint32_t)stream_cipher->bearer) & 0x0000001F) << 27) ^ ((uint32_t)(stream_cipher->direction & 0x00000001) << 15);
//printf ("K:\n");
//hexprint(K, 16);
//printf ("K[0]:%08X\n",K[0]);
//printf ("K[1]:%08X\n",K[1]);
//printf ("K[2]:%08X\n",K[2]);
//printf ("K[3]:%08X\n",K[3]);
//printf ("IV:\n");
//hexprint(IV, 16);
//printf ("IV[0]:%08X\n",IV[0]);
//printf ("IV[1]:%08X\n",IV[1]);
//printf ("IV[2]:%08X\n",IV[2]);
//printf ("IV[3]:%08X\n",IV[3]);
z[0] = z[1] = z[2] = z[3] = z[4] = 0;
/* Run SNOW 3G to produce 5 keystream words z_1, z_2, z_3, z_4 and z_5. */
osa_snow3g_initialize(K, IV, &snow_3g_context);
osa_snow3g_generate_key_stream(5, z, &snow_3g_context);
//printf ("z[0]:%08X\n",z[0]);
//printf ("z[1]:%08X\n",z[1]);
//printf ("z[2]:%08X\n",z[2]);
//printf ("z[3]:%08X\n",z[3]);
//printf ("z[4]:%08X\n",z[4]);
P = ((uint64_t)z[0] << 32) | (uint64_t)z[1];
Q = ((uint64_t)z[2] << 32) | (uint64_t)z[3];
//printf ("P:%16lX\n",P);
//printf ("Q:%16lX\n",Q);
/* Calculation */
D = ceil( stream_cipher->blength / 64.0 ) + 1;
//printf ("D:%d\n",D);
EVAL = 0;
c = 0x1b;
/* for 0 <= i <= D-3 */
for (i=0;i<D-2;i++) {
V = EVAL ^ ( (uint64_t)hton_int32(message[2*i]) << 32 | (uint64_t)hton_int32(message[2*i+1]) );
EVAL = OSA_MUL64(V,P,c);
//printf ("Mi: %16X %16X\tEVAL: %16lX\n",hton_int32(message[2*i]),hton_int32(message[2*i+1]), EVAL);
}
/* for D-2 */
rem_bits = stream_cipher->blength % 64;
if (rem_bits == 0)
rem_bits = 64;
mask = osa_mask32bit(rem_bits%32);
if (rem_bits > 32) {
M_D_2 = ( (uint64_t) hton_int32(message[2*(D-2)]) << 32 ) |
(uint64_t) (hton_int32(message[2*(D-2)+1]) & mask);
} else {
M_D_2 = ( (uint64_t) hton_int32(message[2*(D-2)]) & mask) << 32 ;
}
V = EVAL ^ M_D_2;
EVAL = OSA_MUL64(V,P,c);
/* for D-1 */
EVAL ^= stream_cipher->blength;
/* Multiply by Q */
EVAL = OSA_MUL64(EVAL,Q,c);
MAC_I = (uint32_t)(EVAL >> 32) ^ z[4];
//printf ("MAC_I:%16X\n",MAC_I);
MAC_I = hton_int32(MAC_I);
memcpy(out, &MAC_I, 4);
return 0;
}
int stream_compute_integrity_eia2(stream_cipher_t *stream_cipher, uint8_t out[4]) int stream_compute_integrity_eia2(stream_cipher_t *stream_cipher, uint8_t out[4])
{ {
uint8_t *m; uint8_t *m;
...@@ -83,8 +252,8 @@ int stream_compute_integrity_eia2(stream_cipher_t *stream_cipher, uint8_t out[4] ...@@ -83,8 +252,8 @@ int stream_compute_integrity_eia2(stream_cipher_t *stream_cipher, uint8_t out[4]
int stream_compute_integrity(uint8_t algorithm, stream_cipher_t *stream_cipher, uint8_t out[4]) int stream_compute_integrity(uint8_t algorithm, stream_cipher_t *stream_cipher, uint8_t out[4])
{ {
if (algorithm == EIA1_128_ALG_ID) { if (algorithm == EIA1_128_ALG_ID) {
LOG_E(OSA, "SNOW-3G algorithms are currently not implemented for integrity\n"); LOG_D(OSA, "EIA1 algorithm applied for integrity\n");
return -1; return stream_compute_integrity_eia1(stream_cipher, out);
} else if (algorithm == EIA2_128_ALG_ID) { } else if (algorithm == EIA2_128_ALG_ID) {
LOG_D(OSA, "EIA2 algorithm applied for integrity\n"); LOG_D(OSA, "EIA2 algorithm applied for integrity\n");
return stream_compute_integrity_eia2(stream_cipher, out); return stream_compute_integrity_eia2(stream_cipher, out);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment